Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 8 Sayı: 2, 1 - 10, 31.10.2019

Öz

Kaynakça

  • Fang, J., Zhu, X., Wang, C., Jinggui, L.S., 2016. Applications of DNA Technologies in Agriculture. Current Genomics, 17 (4): 379-386.
  • Zhang, Y. P, Tan, H. H., Cao, S. Y., Wang, X. C., Yang, G., Fang, J. G., 2012. A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers. Genet. Mol. Res. 11(3): 3032-3041.
  • Zhao, M. Z., Zhang, Y. P., Wu, W. M., Wang, C., Qian, Y. M., Yang, G., Fang, J. G., 2011. A new strategy for complete identification of 69 grapevine cultivars using random amplified polymorphic DNA (RAPD) markers. Afr. J. Plant Sci. 5(4): 273-280.
  • Mu, Q., Sun, X., Zhong, G., Wang, X. C., Song, C. N., Fang, J. G., 2012. Employment of a new strategy for identification of lemon (Citrus limon L.) cultivars using RAPD markers. Afr. J. Agric. Res. 7(14): 2075-2082.
  • Ram, S. G., Thiruvengadam, V., Vinod, K. K., 2007. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet. 48(4): 337-345.
  • Percy, R. G., Cantrell, R. G., Zhang, J., 2006. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci. 46(3): 1311-1317.
  • Solomon, K. F., Labuschagne, M. T., Viljoen, C. D., 2007. Estimates of heterosis and association of genetic distance with heterosis in durum wheat under different moisture regimes. J. Agric. Sci. 145(3): 239-248.
  • Cui, F., Ding, A., Li, J., Zhao, C., Wang, L., Wang, X., Qi, X., Li, X., Li, G., Gao, J., Wang, H., 2012. QTL detection of seven spikerelated traits and their genetic correlations in wheat using two related RIL populations. Euphytica. 186(1): 177-192.
  • Jena, K. K., Mackill, D. J., 2008. Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 48(4): 1266-1276.Shi, A., Chen, P., Li, D., Zheng, C., Zhang, B., Hou, A., 2009. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol. Breed. 23(1): 113-124.
  • Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., Sentoku, N., Yasui, H., 2014. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci. Rep., 2014, 4.
  • Wang, C., Han. J., Shangguan, L., Yang, G., Kayesh, E., Zhang, Y., Leng, X., Fang, J., 2014. Depiction of grapevine phenology by gene expression information and a test of its workability in guiding fertilization. Plant Mol. Biol. Rep. 32(5): 1070-1084.
  • Krasensky, J., Jonak, C., 2012. Drought, salt and temperature stres induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4), 1593-1608.
  • Chu, J. Q., Wang, W. Y., Fang, J. G., Zhang, C. H., Zhang, Y. P., Song, C. N., 2012. Effects of foliar applied urea on expression of genes related to nitrogen metabolism in Fujiminori grapevine. J. Plant Nutr. Fertil. Sci. 18(2): 405-416.
  • Chu, J. Q., Yue, L. X., Fang, J. G., Liu, H., Song, C. N., Zhang, A., 2013. Effects of fertilizer application on expression of genes related to nitrogen metabolism in Fujiminori grapevine. Acta Hortic. Sinica. 40(2): 221-230.
  • Yang, X. S., Wu, J., Ziegler, T. E., Yang, X., Zayed, A., Rajani, M. S., Zhou, D, Basra, A. S., Schachtman, D. P., Peng, M., Armstrong, C. L., Caldo, R. A., Morrell, J. A., Lacy, M. Staub, J. M., 2011. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol. 157(4): 1841-1852.
  • Stupak, M., Vanderschuren, H., Gruissem, W., Zhang, P., 2006. Biotechnological approaches to cassava protein improvement. Trends Food Sci. Technol. 17(12): 634-641.
  • Bhatnagar-Mathur, P., Vadez, V., Sharma, K. K., 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27(3): 411-424.
  • Wi, S. J., Kim, W. T., Park, K. Y., 2006. Overexpression of carnation Sadenosylmethionine decarboxylase gene generates a broadspectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 25(10): 1111-1121.
  • Khare, N., Goyary, D., Singh, N. K., Shah, P., Rathore, M., Anandhan, S., Sharma, D., Arif, M., Ahmed, Z., 2010. Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult. 103(2): 267-277.
  • Cheng, H. M., Jian, G. L., Ni, W. C., Yang, H. H., Wang, Z. X., Sun, W. J., Zhang, B. L, Wang, X. F., Ma, C., Jia, S. R., 2005. Increase of Fusarium- and Verticillium-resistance by transferring chitinase and glucanase gene into cotton. Sci. Agri. Sinica. 6, 13.
  • Moose, S. P., Mumm, R. H., 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147(3): 969-977.

Tarımsal Biyoteknolojide DNA Uygulamaları

Yıl 2019, Cilt: 8 Sayı: 2, 1 - 10, 31.10.2019

Öz

Tarımsal üretimde
geleneksel yöntemlerin yerini DNA temelli modern biyoteknolojik yöntemlerin
alması
dünyada hızla artan nüfusun ihtiyaçlarını karşılamak
üzere önemli rol oynamaktadır. Bugüne kadar DNA teknolojisinin tarımsal
üretimde uygulanması üzerine birçok çalışma yapılmıştır ve bu teknoloji
moleküler biyolojideki gelişmeler ile sürekli olarak güncellenmektedir. DNA
dizi bilgisinin kullanılması, gen aktivitesi, bitki yapısı ve mekanizması ile
ilgili bitki özelliklerinin genom çapında analiz ile iyileştirilmesini mümkün
kılmaktadır. Transgenik teknoloji, gen ekspresyon bilgisinin kullanımı ve DNA
moleküler markörleri (işaretleyici) tarımda DNA uygulamalarının mevcut araçları
olup tarımsal üretimde verimliliğin ve kalitenin artırılması, çeşitli stres
faktörlerinin neden olduğu kayıpların azaltılması, germ plazma kaynağının
kullanımının teşvik edilmesi, etkin üreme ve bitki büyümesinin düzenlenmesi
amacıyla yaygın olarak kullanılmaktadır.

Kaynakça

  • Fang, J., Zhu, X., Wang, C., Jinggui, L.S., 2016. Applications of DNA Technologies in Agriculture. Current Genomics, 17 (4): 379-386.
  • Zhang, Y. P, Tan, H. H., Cao, S. Y., Wang, X. C., Yang, G., Fang, J. G., 2012. A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers. Genet. Mol. Res. 11(3): 3032-3041.
  • Zhao, M. Z., Zhang, Y. P., Wu, W. M., Wang, C., Qian, Y. M., Yang, G., Fang, J. G., 2011. A new strategy for complete identification of 69 grapevine cultivars using random amplified polymorphic DNA (RAPD) markers. Afr. J. Plant Sci. 5(4): 273-280.
  • Mu, Q., Sun, X., Zhong, G., Wang, X. C., Song, C. N., Fang, J. G., 2012. Employment of a new strategy for identification of lemon (Citrus limon L.) cultivars using RAPD markers. Afr. J. Agric. Res. 7(14): 2075-2082.
  • Ram, S. G., Thiruvengadam, V., Vinod, K. K., 2007. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet. 48(4): 337-345.
  • Percy, R. G., Cantrell, R. G., Zhang, J., 2006. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci. 46(3): 1311-1317.
  • Solomon, K. F., Labuschagne, M. T., Viljoen, C. D., 2007. Estimates of heterosis and association of genetic distance with heterosis in durum wheat under different moisture regimes. J. Agric. Sci. 145(3): 239-248.
  • Cui, F., Ding, A., Li, J., Zhao, C., Wang, L., Wang, X., Qi, X., Li, X., Li, G., Gao, J., Wang, H., 2012. QTL detection of seven spikerelated traits and their genetic correlations in wheat using two related RIL populations. Euphytica. 186(1): 177-192.
  • Jena, K. K., Mackill, D. J., 2008. Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 48(4): 1266-1276.Shi, A., Chen, P., Li, D., Zheng, C., Zhang, B., Hou, A., 2009. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol. Breed. 23(1): 113-124.
  • Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., Sentoku, N., Yasui, H., 2014. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci. Rep., 2014, 4.
  • Wang, C., Han. J., Shangguan, L., Yang, G., Kayesh, E., Zhang, Y., Leng, X., Fang, J., 2014. Depiction of grapevine phenology by gene expression information and a test of its workability in guiding fertilization. Plant Mol. Biol. Rep. 32(5): 1070-1084.
  • Krasensky, J., Jonak, C., 2012. Drought, salt and temperature stres induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4), 1593-1608.
  • Chu, J. Q., Wang, W. Y., Fang, J. G., Zhang, C. H., Zhang, Y. P., Song, C. N., 2012. Effects of foliar applied urea on expression of genes related to nitrogen metabolism in Fujiminori grapevine. J. Plant Nutr. Fertil. Sci. 18(2): 405-416.
  • Chu, J. Q., Yue, L. X., Fang, J. G., Liu, H., Song, C. N., Zhang, A., 2013. Effects of fertilizer application on expression of genes related to nitrogen metabolism in Fujiminori grapevine. Acta Hortic. Sinica. 40(2): 221-230.
  • Yang, X. S., Wu, J., Ziegler, T. E., Yang, X., Zayed, A., Rajani, M. S., Zhou, D, Basra, A. S., Schachtman, D. P., Peng, M., Armstrong, C. L., Caldo, R. A., Morrell, J. A., Lacy, M. Staub, J. M., 2011. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol. 157(4): 1841-1852.
  • Stupak, M., Vanderschuren, H., Gruissem, W., Zhang, P., 2006. Biotechnological approaches to cassava protein improvement. Trends Food Sci. Technol. 17(12): 634-641.
  • Bhatnagar-Mathur, P., Vadez, V., Sharma, K. K., 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27(3): 411-424.
  • Wi, S. J., Kim, W. T., Park, K. Y., 2006. Overexpression of carnation Sadenosylmethionine decarboxylase gene generates a broadspectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 25(10): 1111-1121.
  • Khare, N., Goyary, D., Singh, N. K., Shah, P., Rathore, M., Anandhan, S., Sharma, D., Arif, M., Ahmed, Z., 2010. Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult. 103(2): 267-277.
  • Cheng, H. M., Jian, G. L., Ni, W. C., Yang, H. H., Wang, Z. X., Sun, W. J., Zhang, B. L, Wang, X. F., Ma, C., Jia, S. R., 2005. Increase of Fusarium- and Verticillium-resistance by transferring chitinase and glucanase gene into cotton. Sci. Agri. Sinica. 6, 13.
  • Moose, S. P., Mumm, R. H., 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147(3): 969-977.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Hülya Kuduğ

Yayımlanma Tarihi 31 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 2

Kaynak Göster

APA Kuduğ, H. (2019). Tarımsal Biyoteknolojide DNA Uygulamaları. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(2), 1-10.
AMA Kuduğ H. Tarımsal Biyoteknolojide DNA Uygulamaları. GBAD. Ekim 2019;8(2):1-10.
Chicago Kuduğ, Hülya. “Tarımsal Biyoteknolojide DNA Uygulamaları”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 8, sy. 2 (Ekim 2019): 1-10.
EndNote Kuduğ H (01 Ekim 2019) Tarımsal Biyoteknolojide DNA Uygulamaları. Gaziosmanpaşa Bilimsel Araştırma Dergisi 8 2 1–10.
IEEE H. Kuduğ, “Tarımsal Biyoteknolojide DNA Uygulamaları”, GBAD, c. 8, sy. 2, ss. 1–10, 2019.
ISNAD Kuduğ, Hülya. “Tarımsal Biyoteknolojide DNA Uygulamaları”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 8/2 (Ekim 2019), 1-10.
JAMA Kuduğ H. Tarımsal Biyoteknolojide DNA Uygulamaları. GBAD. 2019;8:1–10.
MLA Kuduğ, Hülya. “Tarımsal Biyoteknolojide DNA Uygulamaları”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 8, sy. 2, 2019, ss. 1-10.
Vancouver Kuduğ H. Tarımsal Biyoteknolojide DNA Uygulamaları. GBAD. 2019;8(2):1-10.