Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi

Yıl 2024, Cilt: 13 Sayı: 2, 77 - 89, 30.11.2024

Öz

Bu araştırmada; meyve-sebze işleme endüstrisi alanında faaliyette bulunan bazı firmalardan sağlanan bazı atıkların fiziksel, kimyasal kalitelerinin incelenmesi ve incelenen materyallerdeki biyoaktif-biyoyararlı bileşenlerin geri kazanım yöntemlerinin ve verimliliklerinin belirlenmesi amaçlanmıştır. İncelenen örneklerin fiziksel ve kimyasal kalite özelliklerine ait ortalama değerler sırasıyla; toplam nem %6.85-24.98, su aktivitesi 0.994-0.999, toplam asit 0.13-2.30 g S.S.A/100g, pH 3.31-6.55, L* değeri 18.95-95.80, a* değeri 0.60-20.82, b* değeri 5.03-25.23, toplam fenolik madde miktarı (mg GAE/g) 4.98-150, toplam antioksidant kapasite (mg TE/g) 5.94-31.55, EC50 değerlerinin 3.68-36.32 µL ekstrakt, toplam monomerik antosiyanin miktarının 7.95-819.90 mg cyn-3-glucoside/kg olduğu belirlenmiştir. İncelenen tüm örneklerin nem miktarı, aw, pH ve toplam asitlik, renk, toplam fenolik madde miktarı, toplam monomerik antosiyanin miktarı, toplam antioksidan kapasite değerlerinin literatür verileri ile uyumlu olduğu belirlenmiştir.

Etik Beyan

Bu çalışmanın yürütülmesinde ve makalenin yazımında yazım kurallarına, bilimsel ahlak kurallarına uyulduğunu, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıf yapıldığını, elde edilen sonuçların başka bir kaynaktan alınmadığını, kullanılan analiz metodları ve elde edilen sonuçlar üzerinde herhangi bir tahrifat yapılmadığını, makalenin herhangi bir kısmının başka bir üniversitede yapılan bir tez çalışmasından alınmadığını beyan ederim

Destekleyen Kurum

T.C. Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

Bilimsel Araştırma ve Geliştirme Destekleme Projeleri, 2019/22

Teşekkür

Bu çalışmanın yürütülmesinde katkılarından dolayı; T.C. Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'ne teşekkür ederim.

Kaynakça

  • Antonisamy, A.J., Marimuthu, S., Malayandi, S., Rajendran, K., Lin, Y.C., Andaluri, G., Lee, S.L., Ponnusamy, V.K., 2023. Sustainable approaches on industrial food wastes to value-added products –A review on extraction methods, characterizations,and its biomedical applications. Enviromental Research. 217:1-16.
  • Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Omar, A., 2013. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng, 117(4): 426-436.
  • Baiano, A., Bevilacqua, L., Terracone, C., Conto, F., Nobile, M. A., 2014. Single and interactive effects of process variables on microwaveassisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120: 135-145.
  • Biesaga, M., 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography A., 1218(18): 2505-2512.
  • Cemeroğlu, B.S., Yemenicioğlu, A. ve Özkan, M., 2004. Meyve ve sebzelerin bileşimi. Meyve Sebze İşleme Teknolojisi. 1-174. In Ed. B. Cemeroğlu Meyve Sebze İşleme Teknolojisi 2. Baskı, Başkent Matbaacılık, ANKARA
  • Cemeroğlu, B.S. 2010. Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları, Yayın No :34, ANKARA
  • Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z., 2007. Optimization of ultrasoundassisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high- performance liquid chromatography--mass spectrofotometry. Ultrason Sonochem, 14(6): 767-778.
  • Cheok, C., Chin, N., Yusof, Y., Talib, R., Law, C., 2013. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasesic treatments. Ind Crops Prod, 50:1-7.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K., 2015. Optimization of microwave assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem, 166: 585-595.
  • Doulabi, M., Golmakani, M. T., & Ansari, S. (2020). Evaluation and optimization of microwave‐assisted extraction of bioactive compounds from eggplant peel by‐product. Journal of Food Processing and Preservation, 44(11), e14853.
  • Gonzalez, R., Serra, F. C., Femenia, A., Rossello, C., Simal, S., 2015. Effect of power ultrasound application on aqueous extraction of phenolic compunds and antioxidant activity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22: 506-514.
  • Guo, Z., Ge, X., Gou, Q., Han, L., Yu, Q-L., 2021. Utilization of watermelon peel as a peçtin source and the effect of ultrasound treatment on pectin film properties. LWT, 147, 1-10.
  • Giusti, M.M., and Wrolstad, R.E. 2001. Unit F1.2. Anthocyanins. Characterization and measurent with UV- visible spectroscopy. In Current Protocols in Food Analytical Chemistry, R.E Wrolstad, and S.J. Schwartz, (eds.), pp. 1-13, John Wiley &Sons, New York, NY, U.S.A.
  • Gouw, V.P., Jung, J.J., Simonsen, J., Zhao, Y. 2017. Fruit pomace as a source of alrenative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Composites Part A: Applied Science and Manufacturing. 99, 48-57.
  • Haris, S., Alam, M., Galiwango, E., Mohamed, M.M., Kamal-Eldin, A., Al-Marzouqi, A.H., 2023. Characterization analysis of date fruit pomace: An underutilized waste bioresource rich in dietary fiber and phenolic antioxidants. Waste Manegement, 163, 34-42.
  • Lee, S.Y., Liang, Y.N., Stuckey, D.C., Hu, X., 2023. Single-step extraction of bioactive compounds from cruciferous vegetable (kale) waste using natural deep eutectic solvents. Seperation and Purification Technology. 317:1-10.
  • Lima, N.D., Monteiro, B.R.W, Ferreira, A.L.A., Pereira-Coelho, M., Haas, I.C.S., Vitali, L., Madureira, L.AS. Müller, J.M, Carlise, B.F.F., Amboni, R.D.C., 2024. Green extraction of phenolic compounds from the by-product of purple araç´a (Psidium myrtoides) with natural deep eutectic solvents assisted by ultrasound: Optimization, comparison, and bioactivity. Food Research International, 191 :1-12.
  • Maletti, L., D’Eusanio,V., Lancelotti, L., Marchetti, A., Pincelli, L., Strani, L., Tassi, L., 2022. Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. Future Foods, 6, 1-12.
  • Moldovan, C., Nicolescu, A., Frumuzaci, O., Rocchetti, G., Lucini, L., Mocan, A., Crisan, G., 2024. Ultrasound-assisted sustainable extraction of bioactive phytochemicals in shallot (Allium ascalonicum L.) peel: A DoE and metabolomics combined approach. Sustainable Chemistry and Pharmacy, 41:1-11.
  • Nabi, B.G., Mukhtar, K., Ansar, S., Hassan, S.A., Hafeez, M.A., Bhat, Z.F., Khaneghah, A.M., Haq, A.U., Aaadil, R.M., 2024. Application of ultrasound technology for he effective management of waste from fruit and vegetable. Ultrasonics Sonochemistry, 102:1-16.
  • Ray, A., Dubey, K.K., Marathe, S.J., Singhal, R.,2023. Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. Food Bioscience. 52:1-15.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. ve Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
  • Sani, A.N.M, Adzahan, N.M., Fitry, M.R.İ., 2022. Valorization of malaysian tropical fruit seeds: A review of their nutrition, bioactivity, processing and food aplication. Food Bioscience, 50, 1-12.
  • Spanos, G.A., and Wrolstad, R.E., 1990. J.Agric. Food Chem., 38:1565.
  • Shazan, A.E., Dash, K.K., Hamid, Bashir, O., Shams, R., 2024. Comprehensive comparative insights on physico-chemical characteristics,bioactive components, and therapeutic potential of pumpkin fruit. Future Foods. 9:1-17.
  • Svarc-Gajic, J., Stojanovic, Z., Carretero, A.S., Román, D.A., Borrás, I., Vasiljevic, I., 2013. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J Food Eng, 119(3): 525-532.
  • Vieira, G. S., Cavalcanti R. N., Meireles M. A. A., Hubinger, M., 2013. Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound assisted and agitated bed extraction from jussara pulp (Euterpe edulis). Journal of Food Engineering, 119(2):196-204.
  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, C. M. C. G., Chemat, F., 2010. Towards the industrial production of antioxidants from food processing byproducts with ultrasound-assisted extraction, Ultrasesics Sonochemistry, 17: 1066-1074.
  • Vu, N.D., Doan, T.K.L., Dao, T.P., Tran, T.Y.N, Nguyen, N.Q., 2023. Soursop fruit supply chains: Critical stages impacting fruit quality. J. of Agriculture and Food Research, 14, 1-11.
  • Wang, J., Chen, Y., Wang, H., Lin, Z., Zhao, L., 2022. Ethanol and blanching pretreatments change the moisture transfer and physicochemical properties of apple slices via microstructure and cell-wall polysaccarides nanostructure modification. Food Chemistry, 381, 1-12.
  • Xu, B.J., Chang, S.K.C., 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2): S159-S166.
  • Yıldız, H., Toprak, E., 2009.Meyve ve Sebzelerden Doğal Renk Maddelerinin Ekstraksiyonu. Akademik Gıda, 7(84):28-34.
  • Yücetepe, A. (2021). Valorization of peel wastes of purple turnip (Brassica rapa L.): extraction of polyphenolics through ultrasonic-assisted extraction and investigation of changes in total phenolic content, total monomeric anthocyanin content and total antioxidant capacity during in vitro gastro-intestinal digestion. Avrupa Bilim ve Teknoloji Dergisi, (27), 152-157.

The Effects of Different Extraction Method On The Recovery Of Bioactive Components Of Fruit And Vegetable Processing Industry Waste İncluding Antocyanins.

Yıl 2024, Cilt: 13 Sayı: 2, 77 - 89, 30.11.2024

Öz

IIn this study, aimed that to determine some of the physical and chemical quality properties of waste materials from fruit-vegetables production companies and to determine of some bioactice/bioavailable components of this waste by different recycling methods. Second aim is to determine different recycling methods. Average values of physical and chemical quality properties of the studied samples, respectively; total moisture 6.85-24.98%, aw 0.994-0.999, total acid 0.13-2.30 g S.S.A/100g, pH 3.31-6.55, L* value 18.95-95.80, a* value 0.60-20.82, b* value 5.03-25.23, the amount of total phenolic compounds (mg GAE/g) 4.98-150, total antioxidant capacity (mg TE/g) 5.94-31.55, EC50 values of 3.68-36.32 µL of extract, the amount of total monomeric anthocyanin 7.95-819.90 mg cyn-3-glucoside/kg. It was determined that all samples examined were compatible with literature data on moisture content, aw, pH and total acidity, color, total phenolic amount, total monomeric anthocyanin amount, total antioxidant capacity values.

Proje Numarası

Bilimsel Araştırma ve Geliştirme Destekleme Projeleri, 2019/22

Kaynakça

  • Antonisamy, A.J., Marimuthu, S., Malayandi, S., Rajendran, K., Lin, Y.C., Andaluri, G., Lee, S.L., Ponnusamy, V.K., 2023. Sustainable approaches on industrial food wastes to value-added products –A review on extraction methods, characterizations,and its biomedical applications. Enviromental Research. 217:1-16.
  • Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Omar, A., 2013. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng, 117(4): 426-436.
  • Baiano, A., Bevilacqua, L., Terracone, C., Conto, F., Nobile, M. A., 2014. Single and interactive effects of process variables on microwaveassisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120: 135-145.
  • Biesaga, M., 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography A., 1218(18): 2505-2512.
  • Cemeroğlu, B.S., Yemenicioğlu, A. ve Özkan, M., 2004. Meyve ve sebzelerin bileşimi. Meyve Sebze İşleme Teknolojisi. 1-174. In Ed. B. Cemeroğlu Meyve Sebze İşleme Teknolojisi 2. Baskı, Başkent Matbaacılık, ANKARA
  • Cemeroğlu, B.S. 2010. Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları, Yayın No :34, ANKARA
  • Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z., 2007. Optimization of ultrasoundassisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high- performance liquid chromatography--mass spectrofotometry. Ultrason Sonochem, 14(6): 767-778.
  • Cheok, C., Chin, N., Yusof, Y., Talib, R., Law, C., 2013. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasesic treatments. Ind Crops Prod, 50:1-7.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K., 2015. Optimization of microwave assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem, 166: 585-595.
  • Doulabi, M., Golmakani, M. T., & Ansari, S. (2020). Evaluation and optimization of microwave‐assisted extraction of bioactive compounds from eggplant peel by‐product. Journal of Food Processing and Preservation, 44(11), e14853.
  • Gonzalez, R., Serra, F. C., Femenia, A., Rossello, C., Simal, S., 2015. Effect of power ultrasound application on aqueous extraction of phenolic compunds and antioxidant activity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22: 506-514.
  • Guo, Z., Ge, X., Gou, Q., Han, L., Yu, Q-L., 2021. Utilization of watermelon peel as a peçtin source and the effect of ultrasound treatment on pectin film properties. LWT, 147, 1-10.
  • Giusti, M.M., and Wrolstad, R.E. 2001. Unit F1.2. Anthocyanins. Characterization and measurent with UV- visible spectroscopy. In Current Protocols in Food Analytical Chemistry, R.E Wrolstad, and S.J. Schwartz, (eds.), pp. 1-13, John Wiley &Sons, New York, NY, U.S.A.
  • Gouw, V.P., Jung, J.J., Simonsen, J., Zhao, Y. 2017. Fruit pomace as a source of alrenative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Composites Part A: Applied Science and Manufacturing. 99, 48-57.
  • Haris, S., Alam, M., Galiwango, E., Mohamed, M.M., Kamal-Eldin, A., Al-Marzouqi, A.H., 2023. Characterization analysis of date fruit pomace: An underutilized waste bioresource rich in dietary fiber and phenolic antioxidants. Waste Manegement, 163, 34-42.
  • Lee, S.Y., Liang, Y.N., Stuckey, D.C., Hu, X., 2023. Single-step extraction of bioactive compounds from cruciferous vegetable (kale) waste using natural deep eutectic solvents. Seperation and Purification Technology. 317:1-10.
  • Lima, N.D., Monteiro, B.R.W, Ferreira, A.L.A., Pereira-Coelho, M., Haas, I.C.S., Vitali, L., Madureira, L.AS. Müller, J.M, Carlise, B.F.F., Amboni, R.D.C., 2024. Green extraction of phenolic compounds from the by-product of purple araç´a (Psidium myrtoides) with natural deep eutectic solvents assisted by ultrasound: Optimization, comparison, and bioactivity. Food Research International, 191 :1-12.
  • Maletti, L., D’Eusanio,V., Lancelotti, L., Marchetti, A., Pincelli, L., Strani, L., Tassi, L., 2022. Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. Future Foods, 6, 1-12.
  • Moldovan, C., Nicolescu, A., Frumuzaci, O., Rocchetti, G., Lucini, L., Mocan, A., Crisan, G., 2024. Ultrasound-assisted sustainable extraction of bioactive phytochemicals in shallot (Allium ascalonicum L.) peel: A DoE and metabolomics combined approach. Sustainable Chemistry and Pharmacy, 41:1-11.
  • Nabi, B.G., Mukhtar, K., Ansar, S., Hassan, S.A., Hafeez, M.A., Bhat, Z.F., Khaneghah, A.M., Haq, A.U., Aaadil, R.M., 2024. Application of ultrasound technology for he effective management of waste from fruit and vegetable. Ultrasonics Sonochemistry, 102:1-16.
  • Ray, A., Dubey, K.K., Marathe, S.J., Singhal, R.,2023. Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. Food Bioscience. 52:1-15.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. ve Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
  • Sani, A.N.M, Adzahan, N.M., Fitry, M.R.İ., 2022. Valorization of malaysian tropical fruit seeds: A review of their nutrition, bioactivity, processing and food aplication. Food Bioscience, 50, 1-12.
  • Spanos, G.A., and Wrolstad, R.E., 1990. J.Agric. Food Chem., 38:1565.
  • Shazan, A.E., Dash, K.K., Hamid, Bashir, O., Shams, R., 2024. Comprehensive comparative insights on physico-chemical characteristics,bioactive components, and therapeutic potential of pumpkin fruit. Future Foods. 9:1-17.
  • Svarc-Gajic, J., Stojanovic, Z., Carretero, A.S., Román, D.A., Borrás, I., Vasiljevic, I., 2013. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J Food Eng, 119(3): 525-532.
  • Vieira, G. S., Cavalcanti R. N., Meireles M. A. A., Hubinger, M., 2013. Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound assisted and agitated bed extraction from jussara pulp (Euterpe edulis). Journal of Food Engineering, 119(2):196-204.
  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, C. M. C. G., Chemat, F., 2010. Towards the industrial production of antioxidants from food processing byproducts with ultrasound-assisted extraction, Ultrasesics Sonochemistry, 17: 1066-1074.
  • Vu, N.D., Doan, T.K.L., Dao, T.P., Tran, T.Y.N, Nguyen, N.Q., 2023. Soursop fruit supply chains: Critical stages impacting fruit quality. J. of Agriculture and Food Research, 14, 1-11.
  • Wang, J., Chen, Y., Wang, H., Lin, Z., Zhao, L., 2022. Ethanol and blanching pretreatments change the moisture transfer and physicochemical properties of apple slices via microstructure and cell-wall polysaccarides nanostructure modification. Food Chemistry, 381, 1-12.
  • Xu, B.J., Chang, S.K.C., 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2): S159-S166.
  • Yıldız, H., Toprak, E., 2009.Meyve ve Sebzelerden Doğal Renk Maddelerinin Ekstraksiyonu. Akademik Gıda, 7(84):28-34.
  • Yücetepe, A. (2021). Valorization of peel wastes of purple turnip (Brassica rapa L.): extraction of polyphenolics through ultrasonic-assisted extraction and investigation of changes in total phenolic content, total monomeric anthocyanin content and total antioxidant capacity during in vitro gastro-intestinal digestion. Avrupa Bilim ve Teknoloji Dergisi, (27), 152-157.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Ali Levent Coşkun 0000-0001-6826-5206

Proje Numarası Bilimsel Araştırma ve Geliştirme Destekleme Projeleri, 2019/22
Erken Görünüm Tarihi 14 Kasım 2024
Yayımlanma Tarihi 30 Kasım 2024
Gönderilme Tarihi 22 Temmuz 2024
Kabul Tarihi 14 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Coşkun, A. . L. (2024). Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 13(2), 77-89.
AMA Coşkun AL. Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi. GBAD. Kasım 2024;13(2):77-89.
Chicago Coşkun, Ali Levent. “Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13, sy. 2 (Kasım 2024): 77-89.
EndNote Coşkun AL (01 Kasım 2024) Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13 2 77–89.
IEEE A. . L. Coşkun, “Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi”, GBAD, c. 13, sy. 2, ss. 77–89, 2024.
ISNAD Coşkun, Ali Levent. “Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13/2 (Kasım 2024), 77-89.
JAMA Coşkun AL. Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi. GBAD. 2024;13:77–89.
MLA Coşkun, Ali Levent. “Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 13, sy. 2, 2024, ss. 77-89.
Vancouver Coşkun AL. Farklı Ekstraksiyon Yöntemlerinin Antosiyanin İçeren Meyve-Sebze İşleme Endüstrisi Atıklarındaki Biyoaktif Bileşenlerin Eldesi Üzerine Etkisi. GBAD. 2024;13(2):77-89.