Research Article
BibTex RIS Cite

Correlation Between Dynamic Inspiratory Muscle Strength and Some Variables Associated with Aerobic Capacity

Year 2025, Volume: 30 Issue: 2, 45 - 54, 30.06.2025
https://doi.org/10.53434/gbesbd.1659857

Abstract

The aim of this study was to investigate the relationship between dynamic inspiratory muscle strength (IMS) and body composition, peak oxygen consumption (VO2peak), running economy (RE), and pulmonary function test variables. A total of 30 students (8 female and 22 male) (age=21.83±2.09years) from the Faculty of Sport Sciences voluntarily participated in this study. Body composition (with bioelectrical impedance analysis), dynamic inspiratory muscle strength (S-index), and tests of pulmonary function, VO2peak, and RE were performed. VO2peak and RE tests were measured using an ergo-spirometry system. The VO2peak test started with a 5-min warm-up on the treadmill at a 1% constant incline at 6 km/h speed. The test began at an 8 km/h speed, without a break, and persisted by increasing the speed by 1 km/h every 2 minutes until exhaustion. RE was taken on a treadmill with 6-minute tests at a constant speed at 70% and 80% of VO2peak. S-index indicated a significant positive correlation with body composition variables, lean body mass (r=0.661), total body water (r=0.667), and body mass index (r=0.602) (p<0.05). No significant correlation was found between the S-index and VO2 (ml.kg-1.min-1) taken by RE tests (p>0.05). However, a significantly moderate positive correlation was determined between S-index and VO2peak (ml.kg-1.min-1) (r=0.380) (p<0.05). Regarding the pulmonary function test, forced vital capacity (r= 0.634), forced expiratory volume in the first second (r=0.600), peak expiratory flow (r=0.768), and maximum voluntary ventilation (r=0.770) indicated a significant positive correlation with S-index (p<0.05). In conclusion, dynamic inspiratory muscle strength was found to be significantly related to lean body mass and some pulmonary function variables. As a result of VO2peak and RE, which are critical variables of aerobic performance, it is thought that dynamic inspiratory muscle strength may be relevant to oxygen consumption at maximal exercise rather than submaximal exercise.

Ethical Statement

Ethical approval with decision number 2021/606 was obtained from the Clinical Research Ethics Committee of Erciyes University Faculty of Medicine.

Supporting Institution

Erciyes University Scientific Research Projects Unit

Project Number

TYL-2022-11752

References

  • Amann, M., Pegelow, D. F., Jacques, A. J., & Dempsey, J. A. (2007). Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(5), R2036-R2045.
  • Amonette, W. E., & Dupler, T. L. (2002). The effects of respiratory muscle training on VO2max, the ventilatory threshold and pulmonary function. Journal of Exercise Physiology, 5(2), 29-35.
  • Archiza, B., Andaku, D. K., Caruso, F. C. R., Bonjorno Jr, J. C., Oliveira, C. R. d., Ricci, P. A., . . . Phillips, S. A. (2018). Effects of inspiratory muscle training in professional women football players: a randomized sham-controlled trial. Journal of Sports Sciences, 36(7), 771-780.
  • Areias, G. d. S., Santiago, L. R., Teixeira, D. S., & Reis, M. S. (2020). Concurrent validity of the static and dynamic measures of inspiratory muscle strength: comparison between maximal inspiratory pressure and s-index. Brazilian journal of cardiovascular surgery, 35(4), 459-464.
  • Arslan, B., & Melekoğlu, T. (2019). Relationship of aerobic performance and ventilation. Sportive Perspective: Journal of Sport and Education Sciences, 6(1), 19-28.
  • Azad, A., & Zamani, A. (2014). Lean body mass can predict lung function in underweight and normal weight sedentary female young adults. Tanaffos, 13(2), 20.
  • Babcock, M. A., Pegelow, D. F., Harms, C. A., & Dempsey, J. A. (2002). Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. Journal of applied physiology, 93(1), 201-206.
  • Bairapareddy, K. C., Augustine, A., Alaparthi, G. K., Hegazy, F., Shousha, T. M., Ali, S. A., . . . Chandrasekaran, B. (2021). Maximal respiratory pressures and maximum voluntary ventilation in young Arabs: association with anthropometrics and physical activity. Journal of Multidisciplinary Healthcare, 2923-2930.
  • Barnes, K. R., & Kilding, A. E. (2015). Running economy: measurement, norms, and determining factors. Sports medicine-open, 1, 1-15.
  • Barnes, K. R., & Ludge, A. R. (2021). Inspiratory muscle warm-up improves 3,200-m running performance in distance runners. The Journal of Strength & Conditioning Research, 35(6), 1739-1747.
  • Barnes, K. R., Mcguigan, M. R., & Kilding, A. E. (2014). Lower-body determinants of running economy in male and female distance runners. The Journal of Strength & Conditioning Research, 28(5), 1289-1297.
  • Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and science in sports and exercise, 32(1), 70-84.
  • Boutellier, U., & Piwko, P. (1992). The respiratory system as an exercise limiting factor in normal sedentary subjects. European journal of applied physiology and occupational physiology, 64, 145-152.
  • Campoi, H. G., Campoi, E. G., Lopes, R. F., Alves, S. A., Regueiro, E. M., Regalo, S. C., . . . Fabrin, S. C. (2019). Effects of physical activity on aerobic capacity, pulmonary function and respiratory muscle strength of football athletes and sedentary individuals. Is there a correlation between these variables. Journal of Physical Education and Sport, 19(4), 2466-2471.
  • Castagna, C., Impellizzeri, F. M., Chamari, K., Carlomagno, D., & Rampinini, E. (2006). Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: acorrelation study. The Journal of Strength & Conditioning Research, 20(2), 320-325.
  • Chen, T. C., Nosaka, K., Lin, M.-J., Chen, H.-L., & Wu, C.-J. (2009). Changes in running economy at different intensities following downhill running. Journal of Sports Sciences, 27(11), 1137-1144.
  • Colosio, A. L., Pedrinolla, A., Da Lozzo, G., & Pogliaghi, S. (2018). Heart rate-index estimates oxygen uptake, energy expenditure and aerobic fitness in rugby players. Journal of sports science & medicine, 17(4), 633.
  • de Sousa, M. M., dos Santos Pimentel, M., de Andrade Sobreira, I., de Jesus Barros, R., Borghi-Silva, A., & Mazzoli-Rocha, F. (2021). Inspiratory muscle training improves aerobic capacity in amateur indoor football players. International journal of sports medicine, 42(05), 456-463.
  • Deliceoğlu, G., Çakır, V. O., Kabak, B., Ceylan, H. I., Muntean, R. I., & Ștefănică, V. (2024). Does Athletes' Respiratory Muscle Strength Affect Max VO2 Kinetics? Preprints.org (www.preprints.org). doi:10.20944/preprints202403.0987.v1
  • Deliceoğlu, G., Kabak, B., Çakır, V. O., Ceylan, H. İ., Raul-Ioan, M., Alexe, D. I., & Stefanica, V. (2024). Respiratory muscle strength as a predictor of VO2max and aerobic endurance in competitive athletes. Applied Sciences, 14(19), 8976.
  • Dempsey, J. A., Amann, M., Romer, L. M., & Miller, J. D. (2008). Respiratory system determinants of peripheral fatigue and endurance performance. Medicine & science in sports & exercise, 40(3), 457-461.
  • Ergezen, G., Menek, M., & Demir, R. (2023). Respiratory muscle strengths and its association with body composition and functional exercise capacity in non-obese young adults. Family Medicine and Primary Care Review, 25(2).
  • Fatemi, R., Shakerian, S., Ghanbarzade, M., Habibi, A., & Fathi, M. H. (2012). The comparison of dynamic volumes of pulmonary function between different levels of maximal oxygen uptake. International Research Journal of Applied and Basic Sciences, 3(3), 667-674.
  • Faulkner, J., Mauger, A. R., Woolley, B., & Lambrick, D. (2015). The efficacy of a self-paced VO2max test during motorized treadmill exercise. International journal of sports physiology and performance, 10(1), 99-105.
  • Fernández-Lázaro, D., Gallego-Gallego, D., Corchete, L. A., Fernandez Zoppino, D., González-Bernal, J. J., García Gómez, B., & Mielgo-Ayuso, J. (2021). Inspiratory muscle training program using the powerbreath®: Does it have ergogenic potential for respiratory and/or athletic performance? a systematic review with meta-analysis. International journal of environmental research and public health, 18(13), 6703.
  • Fletcher, J. R., Esau, S. P., & MacIntosh, B. R. (2009). Economy of running: beyond the measurement of oxygen uptake. Journal of applied physiology, 107(6), 1918-1922.
  • Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine and science in sports and exercise, 49(7), 1412.
  • Gök, U. C., Koç, M., Macit, Ö., Arslantürk, G., & Coşkun, B. (2024). The Relationship between inspiratory muscle strength and aerobic and anaerobic performance, body composition, and pulmonary function variables. Hacettepe Journal of Sport Sciences, 35(4).
  • Graham, B. L., Steenbruggen, I., Miller, M. R., Barjaktarevic, I. Z., Cooper, B. G., Hall, G. L., . . . McCormack, M. C. (2019). Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. American journal of respiratory and critical care medicine, 200(8), e70-e88.
  • Hackett, D. A., & Sabag, A. (2021). Lung function and respiratory muscle strength and their relationship with weightlifting strength and body composition in non-athletic males. Respiratory Physiology & Neurobiology, 286, 103616.
  • Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., . . . Bach, R. (2007). Aerobic high-intensity intervals improve V˙ O2max more than moderate training. Medicine & science in sports & exercise, 39(4), 665-671.
  • Hulzebos, E., Takken, T., Reijneveld, E. A., Mulder, M. M., & Bongers, B. C. (2018). Reference values for respiratory muscle strength in children and adolescents. Respiration, 95(4), 235-243.
  • Jones, A. M., & Doust, J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, 14(4), 321-327.
  • Jurić, I., Labor, S., Plavec, D., & Labor, M. (2019). Inspiratory muscle strength affects anaerobic endurance in professional athletes. Arhiv za higijenu rada i toksikologiju, 70(1), 42-48.
  • Keiller, D., & Gordon, D. (2018). Confirming maximal oxygen uptake: is heart rate the answer? International journal of sports medicine, 39(03), 198-203.
  • Klusiewicz, A. (2008). Characteristics of the inspiratory muscle strength in the well-trained male and female athletes. Biology of Sport, 25(1), 13.
  • Koç, M., & Saritas, N. (2019). The Effect of Respiratory Muscle Training on Aerobic and Anaerobic Strength in Adolescent Taekwondo Athletes. Journal of Education and Training Studies, 7(2), 103-110.
  • Kowalski, T., & Klusiewicz, A. (2023). POWERbreathe® S-Index Test–guidelines and recommendations for practitioners. Biomedical Human Kinetics, 15(1), 225-228.
  • Ladriñán-Maestro, A., Sánchez-Infante, J., Martín-Vera, D., & Sánchez-Sierra, A. (2024). Influence of an inspiratory muscle fatigue protocol on healthy youths on respiratory muscle strength and heart rate variability. A randomized controlled trial. Frontiers in Physiology, 15, 1457019.
  • Li, T., Xu, L., & Xu, S. (2020). Analysis of physiological and biomechanical factors affecting running economy. Chinese Journal of Tissue Engineering Research, 24(20), 3240.
  • Lundby, C., Montero, D., Gehrig, S., Andersson Hall, U., Kaiser, P., Boushel, R., . . . Flück, M. (2017). Physiological, biochemical, anthropometric, and biomechanical influences on exercise economy in humans. Scandinavian journal of medicine & science in sports, 27(12), 1627-1637.
  • Maiolo, C., Mohamed, E. I., & Carbonelli, M. (2003). Body composition and respiratory function. Acta diabetologica, 40, s32-s38.
  • Markov, G., Spengler, C. M., KnoÈpfli-Lenzin, C., Stuessi, C., & Boutellier, U. (2001). Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. European journal of applied physiology, 85(3), 233-239.
  • McConnell, A., Caine, M., & Sharpe, G. (1997). Inspiratory muscle fatigue following running to volitional fatigue: the influence of baseline strength. International journal of sports medicine, 18(03), 169-173.
  • Minahan, C., Sheehan, B., Doutreband, R., Kirkwood, T., Reeves, D., & Cross, T. (2015). Repeated-sprint cycling does not induce respiratory muscle fatigue in active adults: measurements from the powerbreathe® inspiratory muscle trainer. Journal of sports science & medicine, 14(1), 233.
  • Nalbant, Ö., & Özer, K. (2018). Evaluation of the relationship between body composition and aerobic fitness in youth soccer players. Physical education of students(5), 258-264.
  • Ozmen, T., Gunes, G. Y., Ucar, I., Dogan, H., & Gafuroglu, T. U. (2017). Effect of respiratory muscle training on pulmonary function and aerobic endurance in soccer players. J Sports Med Phys Fitness, 57(5), 507-513.
  • Pessoa, I. M. S., Parreira, V. F., Fregonezi, G. A., Sheel, A. W., Chung, F., & Reid, W. D. (2014). Reference values for maximal inspiratory pressure: a systematic review. Canadian respiratory journal, 21(1), 43-50.
  • Sasaki, M., Kurosawa, H., & Kohzuki, M. (2005). Effects of inspiratory and expiratory muscle training in normal subjects. Journal of the Japanese Physical Therapy Association, 8(1), 29-37.
  • Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports medicine, 34, 465-485.
  • Schoser, B., Fong, E., Geberhiwot, T., Hughes, D., Kissel, J. T., Madathil, S. C., . . . Tiddens, H. A. (2017). Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet journal of rare diseases, 12, 1-12.
  • Sharma, M., Kamal, R., & Chawla, K. (2016). Correlation of body composition to aerobic capacity; A cross sectional study. International Journal of Applied Research, 2(1), 38-42.
  • Silva, P. E., de Carvalho, K. L., Frazão, M., Maldaner, V., Daniel, C. R., & Gomes-Neto, M. (2018). Assessment of maximum dynamic inspiratory pressure. Respiratory care, 63(10), 1231-1238.
  • Silva, R. L. C., Hall, E., & Maior, A. S. (2019). Inspiratory muscle training improves performance of a repeated sprints ability test in professional soccer players. Journal of bodywork and movement therapies, 23(3), 452-455.
  • Silva, W. A., de Lira, C. A. B., Vancini, R. L., & Andrade, M. S. (2018). Hip muscular strength balance is associated with running economy in recreationally-trained endurance runners. PeerJ, 6, e5219.
  • Stone, M. H., Moir, G., Glaister, M., & Sanders, R. (2002). How much strength is necessary? Physical Therapy in Sport, 3(2), 88-96.
  • Stuessi, C., Spengler, C. M., KnoÈpfli-Lenzin, C., Markov, G., & Boutellier, U. (2001). Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. European journal of applied physiology, 84, 582-586.
  • Tartaruga, M. P., Brisswalter, J., Peyré-Tartaruga, L. A., Ávila, A. O. V., Alberton, C. L., Coertjens, M., . . . Kruel, L. F. M. (2012). The relationship between running economy and biomechanical variables in distance runners. Research Quarterly for Exercise and Sport, 83(3), 367-375.
  • Tenório, L. H. S., Nunes, R. P., Santos, A. C., Câmara-Neto, J. B., Lima, A. M. J., de França, E. E. T., & do Socorro Brasileiro-Santos, M. (2012). Lung function, respiratory muscle strength and endurance, and quality of life in the morbidly obese. ConScientiae Saúde, 11(4), 635-641.
  • Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L. R., Backx, K., & Jones, D. A. (2001). Inspiratory muscle training improves rowing performance.
  • Welch, J. F., Archiza, B., Guenette, J. A., West, C. R., & Sheel, A. W. (2018). Sex differences in diaphragmatic fatigue: the cardiovascular response to inspiratory resistance. The Journal of physiology, 596(17), 4017-4032.
  • Weston, A. R., Mbambo, Z., & Myburgh, K. H. (2000). Running economy of African and Caucasian distance runners. Medicine and science in sports and exercise, 32(6), 1130-1134.
  • Williams, J. S., Wongsathikun, J., Boon, S. M., & Acevedo, E. O. (2002). Inspiratory muscle training fails to improve endurance capacity in athletes. Medicine and science in sports and exercise, 34(7), 1194-1198.
There are 63 citations in total.

Details

Primary Language English
Subjects Physical Training and Sports
Journal Section Articles
Authors

Gülsüm Arslantürk 0009-0002-2063-9795

Betül Coşkun 0000-0002-0349-5593

Murat Koç 0000-0001-9103-8554

Dicle Aras 0000-0002-9443-9860

Tahir Hazır 0000-0002-0048-0281

Project Number TYL-2022-11752
Publication Date June 30, 2025
Submission Date March 17, 2025
Acceptance Date June 29, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Arslantürk, G., Coşkun, B., Koç, M., … Aras, D. (2025). Correlation Between Dynamic Inspiratory Muscle Strength and Some Variables Associated with Aerobic Capacity. Gazi Journal of Physical Education and Sport Sciences, 30(2), 45-54. https://doi.org/10.53434/gbesbd.1659857

Gazi Journal of Physical Education and Sports Sciences is a scientific and peer-reviewed journal published quarterly.