Araştırma Makalesi
BibTex RIS Kaynak Göster

Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi

Yıl 2023, , 18 - 26, 10.04.2023
https://doi.org/10.29128/geomatik.1076442

Öz

Evapotranspirasyon (ET), hidrolojik su döngüsünün yağıştan sonra gelen en önemli bileşenlerinden biridir ve topraktan buharlaşan su ile bitkilerden terleme yoluyla kaybolan suyun toplamına eşittir. ET, havzalarda su ve enerji bütçelerinde, tarımsal kuraklığın belirlenmesi ve tarımsal su tüketimini izleme gibi çalışmalarda kullanılmaktadır. Bu çalışmada, ET’yi Landsat 5 ve Landsat 8 uydu görüntüleri ve trapezoid model kullanarak izlenmesi amaçlanmaktadır. Bu model ilk aşamada yeryüzündeki enerjinin buharlaşmaya dönüşme fraksiyonunu (EF) hesaplamaktadır. Daha sonra, güneş ışınımı (Rn) verisini kullanarak ET’yi hesaplamaktadır. Model çıktıları, Bolu Yeniçağa’da 2010-2014 yılları arasında eddy kovaryans yöntemi ile gözlem toplayan akı kulesindeki yersel veriler ile karşılaştırılmıştır. Sonuçlara göre, model ile yersel verilerden hesaplanan EF’lar arasında hem yüksek ilişki hem de düşük hata görülmüştür. Ancak, modellenen ET değerleri, yersel verilerden hesaplanan ET değerlerine göre daha düşüktür. Bu durum, Rn verisinden kaynaklanmaktadır. Bundan dolayı trapezoid model EF’yi düşük bir hata ile hesaplayabildiği için başka bir Rn verisi kullanılarak, model ile uydu verilerinden yüksek doğrulukla ET haritaları üretilebilir. 

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120Y050

Teşekkür

Bu çalışma TÜBİTAK 3501 - Kariyer Geliştirme Programı (Proje No: 120Y050) tarafından desteklenmiştir.

Kaynakça

  • Aksu, H., & Arikan, A. (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2), 559-570. https://doi.org/10.2166/nh.2016.226
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Rome, Italy: FAO - Food and Agriculture Organization of the United Nations. Geliş tarihi gönderen http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf
  • Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., & Robison, C. W. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
  • Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., & Rey-Sanchez, C. (2021). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sensing of Environment, 252, 112189. https://doi.org/10.1016/j.rse.2020.112189
  • Atasever, U. H., & Ozkan, C. (2018). A New SEBAL Approach Modified with Backtracking Search Algorithm for Actual Evapotranspiration Mapping and On-Site Application. Journal of the Indian Society of Remote Sensing, 46(8), 1213-1222. https://doi.org/10.1007/s12524-018-0816-9
  • Atasever, Ü. H., Çobaner, M., Çeti̇n, M., Özkan, C., & İnan, H. İ. (2016). SEBAL tekniği ve Landsat 8 uydu görüntüsü kullanılarak gerçek evapotranspirasyonun haritalanması: Kayseri örneği. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(2), 237-245.
  • Baldocchi, D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
  • Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
  • Bhattarai, N., Shaw, S. B., Quackenbush, L. J., Im, J., & Niraula, R. (2016). Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 49, 75-86. https://doi.org/10.1016/j.jag.2016.01.010
  • Evrendilek, F. (2015). Assessing CO2 sink/source strength of a degraded temperate peatland: Atmospheric and hydrological drivers and responses to extreme events. Ecohydrology, 8(8), 1429-1445. https://doi.org/10.1002/eco.1592
  • Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J., Tu, K., & Wang, K. (2011). Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research, 116(D2), D02102. https://doi.org/10.1029/2010JD014545
  • Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234. Geliş tarihi gönderen https://repository.rothamsted.ac.uk/item/8v5v7/evaporation-and-environment
  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  • Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., & Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10), 3707-3720. https://doi.org/10.5194/hess-17-3707-2013
  • Nichols, W. E., & Cuenca, R. H. (1993). Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resources Research, 29(11), 3681-3690. https://doi.org/10.1029/93WR01958
  • Priestley, C. H. B., & Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Santanello, J. A & Carlson, T. N. (2001). Mesoscale Simulation of Rapid Soil Drying and Its Implications for Predicting Daytime Temperature. Journal of Hydrometeorology, 2(1), 71-88. https://doi.org/10.1175/1525-7541(2001)002<0071:MSORSD>2.0.CO;2
  • Sawadogo, A., Ti̇m, H., Gündoğdu, K. S., Demi̇r, A. O., Ünlü, M., & Zwart, S. J. (2020). Comparative Analysis of The PySEBAL Model And Lysimeter For Estimating Actual Evapotranspiration Of Soybean Crop In Adana, Turkey. International Journal of Engineering and Geosciences, 5(2), 60-65. https://doi.org/10.26833/ijeg.573503
  • Yagci, A. L., & Santanello, J. A. (2018). Estimating Evapotranspiration From Satellite Using Easily Obtainable Variables: A Case Study Over the Southern Great Plains, USA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 12-23. https://doi.org/10.1109/JSTARS.2017.2753723
  • Yagci, A. L., Santanello, J. A., Jones, J. W., & Barr, J. (2017). Estimating evaporative fraction from readily obtainable variables in mangrove forests of the Everglades, U.S.A. International Journal of Remote Sensing, 38(14), 3981-4007. https://doi.org/10.1080/01431161.2017.1312033
  • Yang, X., Smith, P. L., Yu, T., & Gao, H. (2011). Estimating evapotranspiration from terrestrial groundwater-dependent ecosystems using Landsat images. International Journal of Digital Earth, 4(2), 154-170. https://doi.org/10.1080/17538947.2010.491561
  • Yang, X., Zhou, Q., & Melville, M. (1997). Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept. International Journal of Remote Sensing, 18(2), 453-459. https://doi.org/10.1080/014311697219196
  • Yanmaz, D. D. (2019). Estimating evapotranspiration by METRIC model over Çakit basin. Yüksek Lisans Tezi. Middle East Technical University. https://hdl.handle.net/11511/44788
  • Yılmaz, M. T., & Bulut, B. (2016). Türkiye’deki 2000-2015 yılları arasındaki buharlaşma ve terlemenin NOAH hidrolojik modeli ile incelenmesi. DÜMF Mühendislik Dergisi, 7(2), 225-235.
  • Yilmaz, M. T., Anderson, M. C., Zaitchik, B., Hain, C. R., Crow, W. T., Ozdogan, M., Chun, J. A., & Evans, J. (2014). Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resources Research, 50(1), 386-408. https://doi.org/10.1002/2013WR014194
Yıl 2023, , 18 - 26, 10.04.2023
https://doi.org/10.29128/geomatik.1076442

Öz

Proje Numarası

120Y050

Kaynakça

  • Aksu, H., & Arikan, A. (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2), 559-570. https://doi.org/10.2166/nh.2016.226
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Rome, Italy: FAO - Food and Agriculture Organization of the United Nations. Geliş tarihi gönderen http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf
  • Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., & Robison, C. W. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
  • Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., & Rey-Sanchez, C. (2021). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sensing of Environment, 252, 112189. https://doi.org/10.1016/j.rse.2020.112189
  • Atasever, U. H., & Ozkan, C. (2018). A New SEBAL Approach Modified with Backtracking Search Algorithm for Actual Evapotranspiration Mapping and On-Site Application. Journal of the Indian Society of Remote Sensing, 46(8), 1213-1222. https://doi.org/10.1007/s12524-018-0816-9
  • Atasever, Ü. H., Çobaner, M., Çeti̇n, M., Özkan, C., & İnan, H. İ. (2016). SEBAL tekniği ve Landsat 8 uydu görüntüsü kullanılarak gerçek evapotranspirasyonun haritalanması: Kayseri örneği. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(2), 237-245.
  • Baldocchi, D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
  • Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
  • Bhattarai, N., Shaw, S. B., Quackenbush, L. J., Im, J., & Niraula, R. (2016). Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 49, 75-86. https://doi.org/10.1016/j.jag.2016.01.010
  • Evrendilek, F. (2015). Assessing CO2 sink/source strength of a degraded temperate peatland: Atmospheric and hydrological drivers and responses to extreme events. Ecohydrology, 8(8), 1429-1445. https://doi.org/10.1002/eco.1592
  • Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J., Tu, K., & Wang, K. (2011). Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research, 116(D2), D02102. https://doi.org/10.1029/2010JD014545
  • Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234. Geliş tarihi gönderen https://repository.rothamsted.ac.uk/item/8v5v7/evaporation-and-environment
  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  • Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., & Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10), 3707-3720. https://doi.org/10.5194/hess-17-3707-2013
  • Nichols, W. E., & Cuenca, R. H. (1993). Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resources Research, 29(11), 3681-3690. https://doi.org/10.1029/93WR01958
  • Priestley, C. H. B., & Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Santanello, J. A & Carlson, T. N. (2001). Mesoscale Simulation of Rapid Soil Drying and Its Implications for Predicting Daytime Temperature. Journal of Hydrometeorology, 2(1), 71-88. https://doi.org/10.1175/1525-7541(2001)002<0071:MSORSD>2.0.CO;2
  • Sawadogo, A., Ti̇m, H., Gündoğdu, K. S., Demi̇r, A. O., Ünlü, M., & Zwart, S. J. (2020). Comparative Analysis of The PySEBAL Model And Lysimeter For Estimating Actual Evapotranspiration Of Soybean Crop In Adana, Turkey. International Journal of Engineering and Geosciences, 5(2), 60-65. https://doi.org/10.26833/ijeg.573503
  • Yagci, A. L., & Santanello, J. A. (2018). Estimating Evapotranspiration From Satellite Using Easily Obtainable Variables: A Case Study Over the Southern Great Plains, USA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 12-23. https://doi.org/10.1109/JSTARS.2017.2753723
  • Yagci, A. L., Santanello, J. A., Jones, J. W., & Barr, J. (2017). Estimating evaporative fraction from readily obtainable variables in mangrove forests of the Everglades, U.S.A. International Journal of Remote Sensing, 38(14), 3981-4007. https://doi.org/10.1080/01431161.2017.1312033
  • Yang, X., Smith, P. L., Yu, T., & Gao, H. (2011). Estimating evapotranspiration from terrestrial groundwater-dependent ecosystems using Landsat images. International Journal of Digital Earth, 4(2), 154-170. https://doi.org/10.1080/17538947.2010.491561
  • Yang, X., Zhou, Q., & Melville, M. (1997). Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept. International Journal of Remote Sensing, 18(2), 453-459. https://doi.org/10.1080/014311697219196
  • Yanmaz, D. D. (2019). Estimating evapotranspiration by METRIC model over Çakit basin. Yüksek Lisans Tezi. Middle East Technical University. https://hdl.handle.net/11511/44788
  • Yılmaz, M. T., & Bulut, B. (2016). Türkiye’deki 2000-2015 yılları arasındaki buharlaşma ve terlemenin NOAH hidrolojik modeli ile incelenmesi. DÜMF Mühendislik Dergisi, 7(2), 225-235.
  • Yilmaz, M. T., Anderson, M. C., Zaitchik, B., Hain, C. R., Crow, W. T., Ozdogan, M., Chun, J. A., & Evans, J. (2014). Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resources Research, 50(1), 386-408. https://doi.org/10.1002/2013WR014194
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Levent Yağcı 0000-0003-1094-9204

Proje Numarası 120Y050
Yayımlanma Tarihi 10 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yağcı, A. L. (2023). Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi. Geomatik, 8(1), 18-26. https://doi.org/10.29128/geomatik.1076442
AMA Yağcı AL. Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi. Geomatik. Nisan 2023;8(1):18-26. doi:10.29128/geomatik.1076442
Chicago Yağcı, Ali Levent. “Bolu Yeniçağa’da Evapotranspirasyonun Landsat Uydu görüntüleri Ve Trapezoid Model Ile Izlenmesi”. Geomatik 8, sy. 1 (Nisan 2023): 18-26. https://doi.org/10.29128/geomatik.1076442.
EndNote Yağcı AL (01 Nisan 2023) Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi. Geomatik 8 1 18–26.
IEEE A. L. Yağcı, “Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi”, Geomatik, c. 8, sy. 1, ss. 18–26, 2023, doi: 10.29128/geomatik.1076442.
ISNAD Yağcı, Ali Levent. “Bolu Yeniçağa’da Evapotranspirasyonun Landsat Uydu görüntüleri Ve Trapezoid Model Ile Izlenmesi”. Geomatik 8/1 (Nisan 2023), 18-26. https://doi.org/10.29128/geomatik.1076442.
JAMA Yağcı AL. Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi. Geomatik. 2023;8:18–26.
MLA Yağcı, Ali Levent. “Bolu Yeniçağa’da Evapotranspirasyonun Landsat Uydu görüntüleri Ve Trapezoid Model Ile Izlenmesi”. Geomatik, c. 8, sy. 1, 2023, ss. 18-26, doi:10.29128/geomatik.1076442.
Vancouver Yağcı AL. Bolu Yeniçağa’da evapotranspirasyonun Landsat uydu görüntüleri ve trapezoid model ile izlenmesi. Geomatik. 2023;8(1):18-26.