Araştırma Makalesi
BibTex RIS Kaynak Göster

Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli

Yıl 2022, , 128 - 138, 15.08.2022
https://doi.org/10.29128/geomatik.904718

Öz

Bu çalışma, 24. güneş döngüsünde meydana gelen 01 Şubat 2017 (DsT -45 nT) zayıf jeomanyetik fırtınasının matematiksel analizini amaçlamaktadır. NASA'dan alınan güneş rüzgarı parametreleri (Bz, E, P, N, v, T), zonal jeomanyetik indeksleri (Dst, ap, AE) ve neden-sonuç ilişkisini göz önünde bulundurarak Şubat fırtınasının matematiksel modeli ortaya çıkarılmıştır. Makalede fırtına titizlikle analiz edilir ve nedensellik ilkesinin yönettiği modellerle özellikleri ortaya çıkarılmaya çalışılır. Bu çalışmada değişkenlerin değer aralığı ve standart sapmaları tanımlayıcı analiz ile tanımlanır, verilerin binary ilişkileri kovaryans matrisi ile gösterilir ve yine verilerin hiyerarşik kümeleri dendrogram ile tanıtılır. Faktör analizi, verilerin normal dağılımları yardımıyla gerçekleştirilir ve fenomenin gizemi lineer-nonlineer modellerle tartışılmaya çalışılır. Değişkenlerin ikili görünümleri grafikler ile okuyucuya sunularak fırtınaya görsellik kazandırılır. Bu çalışma, literatürde sınırlı sayıda çalışma bulunan zayıf seviyede manyetik fırtınanın modellenmesi konusuna katkı sağlamaktadır. 

Kaynakça

  • Adhikari B, Adhikari N, Aryal B, Chapagain N P, Horvath I (2019). Impacts on Proton Fluxes Observed During Different Interplanetary Conditions, Sol. Phys., 294: 61, https://doi.org/10.1007/s11207-019-1450-6
  • Akasofu S I (1964). The Development of the Auroral Substorm. Planet. Space Sci., 12 (4): 273, https://doi.org/10.1016/0032-0633(64)90151-5
  • Borovsky J E (2012). The velocity and Magnetic Field Fluctuations of the Solar Wind at 1 AU: Statistical Analysis of Fourier Spectra and Correlations with Plasma Properties, J. Geophys. Res. Space Physics, 117 (A5), A05104, doi:10.1029/2011JA017499
  • Borovsky J E & Yakymenko K (2017). Systems Science of the Magnetosphere: Creating Indices of Substorm Activity, of the Substorm‐Injected Electron Population, and of the Electron Radiation Belt, J. Geophys. Res. Space Physics, 122 (10): 10012, doi:10.1002/2017JA024250
  • Burton R K, McPherron R L, Russell C T (1975). An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80, 4204, https://doi.org/10.1029/JA080i031p04204
  • Elliott H A, Jahn J M, David J M C (2013). The Kp index and solar wind speed relationship: Insights for improving space weather forecasts, Sp. Weather, 11(6), 339, doi: https://doi.org/10.1002/swe.20053
  • Eroglu E (2011). Dalga Kılavuzları Boyunca Geçici Sinyallerin Transferi, Gebze Yüksek Teknoloji Enstitüsü, Matematik Anabilim Dalı, Doktora Tezi, Gebze.
  • Eroglu E, Aksoy S, Tretyakov O A (2012). Surplus of energy for time-domain waveguide modes, Energy Educ. Sci. Tech., 29(1), 495.
  • Eroglu E, Ak N, Koklu K, Ozdemir Z, Celik N, Eren N (2012). Special functions in transferring of energy; a special case: “Airy function”, Energy Educ. Sci. Tech, 30(1), 719.
  • Eroglu E (2018). Mathematical modeling of the moderate storm on 28 February 2008, Newast, 60, 33, https://doi.org/10.1016/j.newast.2017.10.002
  • Eroglu E (2019). Modeling the superstorm in the 24th solar cycle, Earth Planets Spaces, 71:26, doi: https://doi.org/10.1186/s40623-019-1002-1
  • Fu H S, Tu J, Song P, Cao B, Reinisch B W, Yang B (2010). The nightside‐to‐dayside evolution of the inner magnetosphere: Imager for Magnetopause‐to‐Aurora Global Exploration Radio Plasma Imager observations, J. Geophys. Res., 115, A04213, doi:10.1029/2009JA014668
  • Fu H S, Cao J B, Cully C M, Khotyaintsev Y V, Vaivads A, Angelopoulos V, Zong Q G, Santolík O, Macúšová E, André M, Liu W L, Lu H Y, Zhou M, Huang S Y, Zhima Z (2014). Whistler-mode waves inside flux pileup region: Structured or unstructured?, J. Geophys. Res., 119, 9089, doi: 10.1002/2014JA020204
  • Gonzalez W D & Tsurutani B T (1987). Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than −100 nT), Planet Space Sci, 35(9), 1101, doi:10.1016/0032-0633(87)90015-8
  • Gonzalez W D, Tsurutani B T, Gonzalez A L C, Smith E J, Tang F, Akasofu S I (1989). Solar Wind‐Magnetosphere Coupling During Intense Magnetic Storms (1978‐1979), J. Geophys. Res., 94 (A7): 8835, doi:10.1029/ja094ia07p08835
  • Gonzalez W D, Tsurutani B T, Gonzalez A L (1999). Interplanetary Origin of Geomagnetic Storms, Space Sci. Rev., 88: 529, https://doi.org/10.1023/A:1005160129098
  • Joshi N C, Bankoti N S, Pande S, Pande B, Pandey K (2011). Relationship Between Interplanetary Field/Plasma Parameters with Geomagnetic Indices and Their Behavior During Intense Geomagnetic Storms, Newast, 16 (6): 366, https://doi.org/10.1016/j.newast.2011.01.004
  • Kamide Y, Baumjohann W, Daglis L A, Gonzalez W D, Grande M, Joselyn J A, McPherron R L, Phillips J L, Reeves G D, Rostoker G, Shanna A S, Singer H J, Tsurutani B T, Vasyliuna V M (1998). Current Understanding of Magnetic Storms' Storm-Substorm Relationships J. Geophys. Res., 103 (A8): 17705.
  • Loewe C A & Prölss G W (1997). Classification and Mean Behavior of Magnetic Storms, J. Geophys. Res., 102 (A7): 14209.
  • Manoharan P K, Subrahmanya C R, Chengalur J N (2017). Space Weather and Solar Wind Studies with OWFA, J. Astrophys. Astr., 38: 16, doi:10.1007/s12036-017-9435-z
  • Mayaud P N (1980). Derivation, Meaning, and Use of Geomagnetic Indices, Geophys. Monogr. Ser., 22: 154, doi: 10.1029/GM022
  • Ogilvie K W & Burlaga L F (1969). Hydromagnetic Shocks in the Solar Wind, Sol. Phys., 8 (2): 422, doi: https://doi.org/10.1007/BF00155390
  • Subrahmanya C R, Prasad P, Girish B S, Somashekar R, Manoharan P K, Mittal A K (2017). The Receiver System for the Ooty Wide Field Array, J. Astrophys. Astr., 38: 11, https://doi.org/10.1007/s12036-017-9434-0
  • Tsurutani B T, Gonzalez W D, Gonzalez A L C, Guarnieri F L, Gopalswamy N, Grande M, Kamide Y, Kasahara Y, Lu G, Mann I, McPherron R, Soraas F, Vasyliunas V (2006). Corotating Solar Wind Streams and Recurrent Geomagnetic Activity: A review, J. Geophys. Res. Space Physics, 111 (A7), https://doi.org/10.1029/2005JA011273
  • Zic T, Vrsnak B, Temmer M (2015). Heliospheric Propagation of Coronal Mass Ejections Drag-Based Model Fitting, Ap. J.S, 218, 32, doi:10.1088/0067-0049/218/2/32
  • URL-1 http://themis.igpp.ucla.edu/software.shtml
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Samed İnyurt 0000-0001-9339-7569

Yayımlanma Tarihi 15 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA İnyurt, S. (2022). Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli. Geomatik, 7(2), 128-138. https://doi.org/10.29128/geomatik.904718
AMA İnyurt S. Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli. Geomatik. Ağustos 2022;7(2):128-138. doi:10.29128/geomatik.904718
Chicago İnyurt, Samed. “Zayıf 01 Şubat 2017 Jeomanyetik fırtınasının Matematiksel Modeli”. Geomatik 7, sy. 2 (Ağustos 2022): 128-38. https://doi.org/10.29128/geomatik.904718.
EndNote İnyurt S (01 Ağustos 2022) Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli. Geomatik 7 2 128–138.
IEEE S. İnyurt, “Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli”, Geomatik, c. 7, sy. 2, ss. 128–138, 2022, doi: 10.29128/geomatik.904718.
ISNAD İnyurt, Samed. “Zayıf 01 Şubat 2017 Jeomanyetik fırtınasının Matematiksel Modeli”. Geomatik 7/2 (Ağustos 2022), 128-138. https://doi.org/10.29128/geomatik.904718.
JAMA İnyurt S. Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli. Geomatik. 2022;7:128–138.
MLA İnyurt, Samed. “Zayıf 01 Şubat 2017 Jeomanyetik fırtınasının Matematiksel Modeli”. Geomatik, c. 7, sy. 2, 2022, ss. 128-3, doi:10.29128/geomatik.904718.
Vancouver İnyurt S. Zayıf 01 Şubat 2017 jeomanyetik fırtınasının matematiksel modeli. Geomatik. 2022;7(2):128-3.