Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2019, Cilt 4, Sayı 2, 82 - 91, 01.08.2019
https://doi.org/10.29128/geomatik.479189

Öz

Kaynakça

  • AVIRIS NW Indiana’s Indian Pines Data Set. (1992). https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html adresinden erişildi.
  • Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J. ve Calpe-Maravilla, J. (2006). Composite Kernels for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 3(1), 93-97.
  • Chen, Y., Nasrabadi, N. M. ve Tran, T. D. (2011). Hyperspectral Image Classification Using Dictionary-Based Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3973-3985.
  • Dundar, T. ve Ince, T. (2018). Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter. IEEE Geoscience and Remote Sensing Letters, 1-5.
  • Fang, L., Li, S., Kang, X. ve Benediktsson, J. A. (2014). Spectral–Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7738-7749.
  • Fang, L., Li, S., Kang, X. ve Benediktsson, J. A. (2015). Spectral–Spatial Classification of Hyperspectral Images With a SuperpixelBased Discriminative Sparse Model. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4186-4201.
  • Guo, Y., Cao, H., Han, S., Sun, Y. ve Bai, Y. (2018). Spectral–Spatial HyperspectralImage Classification With KNearest Neighbor and Guided Filter. IEEE Access, 6, 18582-18591.
  • He, K., Sun, J. ve Tang, X. (2013). Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397-1409.
  • J. Anthony Gualtieri ve Robert F. Cromp. (1999). Support vector machines for hyperspectral remote sensing classification. Proc. SPIE içinde (C. 3584, ss. 221-232).
  • L. Gan, J. Xia, P. Du ve Z. Xu. (2017). Dissimilarity-Weighted Sparse Representation for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 14(11), 1968-1972.
  • L. Pan, H. Li ve X. Chen. (2016). Locality constrained low-rank representation for hyperspectral image classification. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) içinde (ss. 493-496).
  • Lu, C.-Y., Min, H., Gui, J., Zhu, L. ve Lei, Y.-K. (2013). Face recognition via Weighted Sparse Representation. Journal of Visual Communication and Image Representation, 24(2), 111-116.
  • Ma, L., Crawford, M. M. ve Tian, J. (2010). Local Manifold Learning-Based -NearestNeighbor for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4099-4109.
  • Melgani, F. ve Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
  • Q. Wang, X. He ve X. Li. (2018). Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 1-13.
  • Tropp, J. A. ve Gilbert, A. C. (2007). Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53(12), 4655-4666.
  • Tropp, J. A., Gilbert, A. C. ve Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 86(3), 572-588.
  • Tu, B., Zhang, X., Kang, X., Zhang, G., Wang, J. ve Wu, J. (2018). Hyperspectral Image Classification via Fusing Correlation Coefficient and Joint Sparse Representation. IEEE Geoscience and Remote Sensing Letters, 15(3), 340-344.
  • Zhang, H., Li, J., Huang, Y. ve Zhang, L. (2014). A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2056-2065.

Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması

Yıl 2019, Cilt 4, Sayı 2, 82 - 91, 01.08.2019
https://doi.org/10.29128/geomatik.479189

Öz

Seyrek gösterim tabanlı teknikler sağladıkları performans nedeniyle sinyal ve görüntü işleme, bilgisayarlı görme ve örüntü tanıma gibi alanlarda araştırmacılar tarafından sıklıkla kullanılmaktadır. Son zamanlarda hiperspektral görüntülerin sınıflandırılması ile ilgili önerilen metotlarda da seyrek gösterim teknikleri kullanılmış ve olumlu sonuçlar elde edilmiştir. Bu makalede, adaptif komşuluk seçimi ile ağırlık atama yöntemlerini birlikte kullanan bir ortak seyrek gösterim tabanlı sınıflandırıcı önerilmektedir. İlk olarak, test pikseli etrafında oluşturulan sabit boyutlu pencere içerisindeki piksellerin tümünün sınıflandırma işlemine dahil edilmesi yerine test pikseline yakın mesafedeki ve benzer spektral karakteristiğe sahip pikseller seçilerek sınıflandırmaya dahil edilmiştir. Bu sayede test pikseline uzak mesafedeki ve spektral olarak benzemeyen komşu pikseller ayrılmıştır. Daha sonra test pikselinin sınıf etiketini belirlerken hesaplanması gereken artık değerde seyrek katsayı matrisi her bir sınıf için belirlenen ağırlıklarla çarpılmıştır. Ağırlıklar belirlenirken seçilen pikseller ile her bir sınıfa ait eğitim sözlüğü arasındaki benzerlik dikkate alınmıştır. Bu sayede test pikselinin doğru sınıfa atanma olasılığı arttırılmıştır. 

Kaynakça

  • AVIRIS NW Indiana’s Indian Pines Data Set. (1992). https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html adresinden erişildi.
  • Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J. ve Calpe-Maravilla, J. (2006). Composite Kernels for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 3(1), 93-97.
  • Chen, Y., Nasrabadi, N. M. ve Tran, T. D. (2011). Hyperspectral Image Classification Using Dictionary-Based Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3973-3985.
  • Dundar, T. ve Ince, T. (2018). Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter. IEEE Geoscience and Remote Sensing Letters, 1-5.
  • Fang, L., Li, S., Kang, X. ve Benediktsson, J. A. (2014). Spectral–Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7738-7749.
  • Fang, L., Li, S., Kang, X. ve Benediktsson, J. A. (2015). Spectral–Spatial Classification of Hyperspectral Images With a SuperpixelBased Discriminative Sparse Model. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4186-4201.
  • Guo, Y., Cao, H., Han, S., Sun, Y. ve Bai, Y. (2018). Spectral–Spatial HyperspectralImage Classification With KNearest Neighbor and Guided Filter. IEEE Access, 6, 18582-18591.
  • He, K., Sun, J. ve Tang, X. (2013). Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397-1409.
  • J. Anthony Gualtieri ve Robert F. Cromp. (1999). Support vector machines for hyperspectral remote sensing classification. Proc. SPIE içinde (C. 3584, ss. 221-232).
  • L. Gan, J. Xia, P. Du ve Z. Xu. (2017). Dissimilarity-Weighted Sparse Representation for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 14(11), 1968-1972.
  • L. Pan, H. Li ve X. Chen. (2016). Locality constrained low-rank representation for hyperspectral image classification. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) içinde (ss. 493-496).
  • Lu, C.-Y., Min, H., Gui, J., Zhu, L. ve Lei, Y.-K. (2013). Face recognition via Weighted Sparse Representation. Journal of Visual Communication and Image Representation, 24(2), 111-116.
  • Ma, L., Crawford, M. M. ve Tian, J. (2010). Local Manifold Learning-Based -NearestNeighbor for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4099-4109.
  • Melgani, F. ve Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
  • Q. Wang, X. He ve X. Li. (2018). Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 1-13.
  • Tropp, J. A. ve Gilbert, A. C. (2007). Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53(12), 4655-4666.
  • Tropp, J. A., Gilbert, A. C. ve Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 86(3), 572-588.
  • Tu, B., Zhang, X., Kang, X., Zhang, G., Wang, J. ve Wu, J. (2018). Hyperspectral Image Classification via Fusing Correlation Coefficient and Joint Sparse Representation. IEEE Geoscience and Remote Sensing Letters, 15(3), 340-344.
  • Zhang, H., Li, J., Huang, Y. ve Zhang, L. (2014). A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2056-2065.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tugcan DÜNDAR (Sorumlu Yazar)
Gaziantep Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği
0000-0003-1374-8651
Türkiye


Taner İNCE
Gaziantep Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği
0000-0003-1757-5209
Türkiye

Yayımlanma Tarihi 1 Ağustos 2019
Yayınlandığı Sayı Yıl 2019, Cilt 4, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { geomatik479189, journal = {Geomatik}, issn = {}, eissn = {2564-6761}, address = {}, publisher = {Murat YAKAR}, year = {2019}, volume = {4}, pages = {82 - 91}, doi = {10.29128/geomatik.479189}, title = {Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması}, key = {cite}, author = {Dündar, Tugcan and İnce, Taner} }
APA Dündar, T. & İnce, T. (2019). Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması . Geomatik , 4 (2) , 82-91 . DOI: 10.29128/geomatik.479189
MLA Dündar, T. , İnce, T. "Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması" . Geomatik 4 (2019 ): 82-91 <https://dergipark.org.tr/tr/pub/geomatik/issue/45610/479189>
Chicago Dündar, T. , İnce, T. "Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması". Geomatik 4 (2019 ): 82-91
RIS TY - JOUR T1 - Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması AU - Tugcan Dündar , Taner İnce Y1 - 2019 PY - 2019 N1 - doi: 10.29128/geomatik.479189 DO - 10.29128/geomatik.479189 T2 - Geomatik JF - Journal JO - JOR SP - 82 EP - 91 VL - 4 IS - 2 SN - -2564-6761 M3 - doi: 10.29128/geomatik.479189 UR - https://doi.org/10.29128/geomatik.479189 Y2 - 2018 ER -
EndNote %0 Geomatik Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması %A Tugcan Dündar , Taner İnce %T Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması %D 2019 %J Geomatik %P -2564-6761 %V 4 %N 2 %R doi: 10.29128/geomatik.479189 %U 10.29128/geomatik.479189
ISNAD Dündar, Tugcan , İnce, Taner . "Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması". Geomatik 4 / 2 (Ağustos 2019): 82-91 . https://doi.org/10.29128/geomatik.479189
AMA Dündar T. , İnce T. Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması. Geomatik. 2019; 4(2): 82-91.
Vancouver Dündar T. , İnce T. Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması. Geomatik. 2019; 4(2): 82-91.
IEEE T. Dündar ve T. İnce , "Adaptif Komşuluk Seçimi ve Ağırlık Atama Yöntemleri ile Hiperspektral Görüntülerin Sınıflandırılması", Geomatik, c. 4, sayı. 2, ss. 82-91, Ağu. 2019, doi:10.29128/geomatik.479189