Derleme
BibTex RIS Kaynak Göster

Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri

Yıl 2022, Cilt: 56 Sayı: 1, 81 - 91, 30.12.2022

Öz

Nadir toprak elementleri (NTE) veya lantanitler, periyodik cetvelde atom numaraları 57’den 71’e kadar olan 15 elementi ifade etmektedir. Havacılık ve otomobil sektöründen, cep telefonlarına kadar pek çok alanda kullanılan NTE’leri çevreye kolayca yayılmakta ve radyoaktif özelliklerinden dolayı ekosistem için büyük bir tehdit oluşturmaktadır. Uranyum endüstriyel uygulamalarda (petrol, kataliz vb.) özel gereksinimler için kullanılan bir elementtir. İnsan sağlığı açısından düşünüldüğünde ise Uranyum kemiklerde, karaciğer ve akciğerde kansere sebep olabilmektedir. Bu çalışmada önemli bir NTE’i olan Uranyumun çevresel etkileri ve insan sağlığı üzerine olan riskleri değerlendirilmiştir.

Destekleyen Kurum

yokyok

Kaynakça

  • Aires, U.R.V., Santos, B.S.M., Coelho, C.D., da Silva, D.D., Calijuri, M.D., 2018. Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Pol. 70: 63–70.
  • ATSDR, 2013. Toxicological Profile for Uranium. ATSDR Report. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences. Environmental Toxicology Branch, Atlanta, USA .
  • Akash, S., Sivaprakash, B., Vadivel Raja, V. C., Rajamohan, N., Muthusamy, G., 2022. Remediation techniques for uranium removal from polluted environment – Review on methods, mechanism and toxicology, Environmental Pollution 302: 119068.
  • Arogunjo, A. M., Höllriegl V., Giussani, A., Leopold, K., Gerstmann, U., Veronese I., Oeh, U., 2009 Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity, Journal of Environmental Radioactivity 100: 232–240.
  • Babayan, G., Sakoyan, A., Sahakyan, G., 2019. Drinking water quality and health risk analysis in the mining impact zone, Armenia. Sustainable Water Resources Management 5: 1877–1886.
  • Bergmann, M., Sobral, O., Pratas, J., Graça, M.A., 2018. Uranium toxicity to aquatic invertebrates: a laboratory assay. Environ. Pollut. 239: 359–366.
  • Chen, L., Liu, J., Zhang,W., Zhou, J., Luo, D., Li, Z., 2021. Uranium(U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J. Hazard. Mater. 413, 125319.
  • Duggal, V., Rani, A., Mehra, R., Saini, K., Bajwa, B.S., 2017. Assessment of age-dependent radiation dose and toxicity risk due to intake of uranium through the ingestion of groundwater from Northern Rajasthan, India. Toxicol. Environ. Chem. 99, 3:516–524.
  • European Commission (EU), 1998. The Drinking Water Directive 98/83/EC.
  • Flett, L., Claire L. McLeod, Jessica L. McCarty, Barry J. Shaulis, Justin J. Fain, Mark P.S. Krekeler, 2021. Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. Environmental Research 194: 110619.
  • Giere, R., Kaltenmeier, R., Pourcelot, L., 2012. Uranium oxide and other airborne par- ticles deposited on cypress leaves close to a nuclear facility. J. Environ. Monit. 14:1264–1274.
  • Godoy, J.M., Ferreira, P.R., de Souza, E.M., da Silva, L.I., Bittencourt, I.C.S., Fraifeld, F., 2019. High uranium concentrations in the groundwater of the Rio de Janeiro State, Brazil, Mountainous Region. J. Braz. Chem. Soc. 30: (2).
  • Guilmette, R.A., Miller, G., Parkhurst, M.A., 2009. Capstone depleted uranium aerosol biokinetics, concentrations and doses. Health Physics 96, 328-342.
  • Jain, V. K., Pandya, R A, Pillai, S G., Shrivastav, P S, 2006. Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4] arene anchored chloromethylated, Talanta 70: 257–266.
  • Karpas, Z., 2014. Analytical Chemistry of Uranium. Environmental, Forensic, Nuclear and Toxicological Applications. CRC Press, Taylor & Francis Group, 6000, Broken Sound Parkway NW ISBN 13—978-1-4822-2060-2.
  • Liu, Y., Becker, B., Burdine, B., Sigmon, G.E., Burns, P.C., 2017. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide. RSC Adv. 7, 34: 21273–21280.
  • ME, 2015. Rules on DrinkingWater Quality and Inspection, Etc (In Korean). Ministry of Environment in Korea, Seoul.
  • Nilchi, A., T. Shariati Dehaghan, S., Garmarodi, R., 2013. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination 321: 67–71.
  • Noli, F., Argyro Dafnomili, Georgios Sarafidis, Catherine Dendrinou-Samara, Nikolaos Pliatsikas, Maria Kapnisti, 2022. Uranium and Thorium water decontamination via novel coated Cu-based nanoparticles; the role of chemistry and environmental implications, Science of the Total Environment 838:156050.
  • Pal, S., Mandal, I., 2019. Impact of aggregate quarrying and crushing on socio-ecological components of Chottanagpur plateuar fringe area of India. Environmental Earth Sciences 78, 661.
  • Reta, G. , Dong, X. , Li, Z. , Su, B. , Hu, X. , Bo, H. , Yu, D. , Wan, H. , Liu, J. , Li, Y. , Xu, G. , Wang, K. , Xu, S. , 2018. Environmental impact of phosphate mining and benefi- ciation: review. Int. J. Hydrol. 2, (4): 424–431.
  • Shin, W., Jungsun Oh, Sungwook Choung, Byong-Wook Cho, Kwang-Sik Lee, Uk Yun, Nam-Chil Woo, Hyun Koo Kim, 2016. Distribution and potential health risk of groundwater uranium in Korea, Chemosphere 163:108-115.
  • U.S. Environmental Protection Agancy (EPA), 2021. Drinking Water Requirements for States and PublicWater Systems: Drinking Water Regulations. United States Environmental Protection Agency (EPA), Washington, DC.
  • US EPA, Environmental Protection Agancy 2009. National Primary Drinking Water Regulations. Washington DC. Vigier, J.F., Freis, D., P¨oml, P., Prieur, D., Lajarge, P., Gardeur, S., et al., 2018. Optimization of uranium-doped americium oxide synthesis for space application. Inorg. Chem. 57 (8): 4317–4327.
  • Wang, Z., Zhang, L., Zhang, K., Lu, Y., Chen, J., Wang, S., Hu, B., Wang, X., 2022. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: a review. Chemosphere 287, 132313.
  • Winde, F., Brugge, D., Nidecker, A., Ruegg, U., 2017. Uranium from Africa-An overview on past and current mining activities: Re-appraising associated risks and chances in a global context, Journal of African Earth Sciences 129:759-778.
  • WHO, 2011. Guidelines for Drinking-water Quality, fourth ed. (Geneva).
  • Xiao, F., Li, H., Xie, P., Liu, J., Du, W., Li, L., Yang, S., Wu, Z., 2022. Colloidal templating of highly ordered porous amidoxime-functionalized hydrogel for intelligent treatment of uranium contaminated water. Chem. Eng. J. 431, 134141.
  • Zamora, M.L.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A.F., Hunt, W.C., Capello, K., 2009. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community. Arch. Environ. Occup. Health 64 (4): 228–241.
  • Zoriy, P., Ostapczuk, P., Dederichs, H., Höbig, J., Lennartz, R., Zoriy, M., 2010. Biomonitoring of environmental pollution by thorium and uranium in selected regions of the Republic of Kazakhstan, Journal of Environmental Radioactivity 101:414-420.

Environmental Effects of Rare Earth Element (REE) Uranium

Yıl 2022, Cilt: 56 Sayı: 1, 81 - 91, 30.12.2022

Öz

Rare earth elements (REE) or lanthanides refer to 15 elements with atomic numbers from 57 to 71 in the periodic table. REEs, which are used in many areas from the aviation and automobile industry to mobile phones, spread easily to the environment and pose a great threat to the ecosystem due to their radioactive properties. Uranium is an element used for special requirements in industrial applications (petroleum, catalysis, etc.). When considered in terms of human health, uranium can cause cancer in bones, liver and lung. In this study, the environmental effects of Uranium, which is an important REE, and its risks on human health were evaluated.

Kaynakça

  • Aires, U.R.V., Santos, B.S.M., Coelho, C.D., da Silva, D.D., Calijuri, M.D., 2018. Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Pol. 70: 63–70.
  • ATSDR, 2013. Toxicological Profile for Uranium. ATSDR Report. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences. Environmental Toxicology Branch, Atlanta, USA .
  • Akash, S., Sivaprakash, B., Vadivel Raja, V. C., Rajamohan, N., Muthusamy, G., 2022. Remediation techniques for uranium removal from polluted environment – Review on methods, mechanism and toxicology, Environmental Pollution 302: 119068.
  • Arogunjo, A. M., Höllriegl V., Giussani, A., Leopold, K., Gerstmann, U., Veronese I., Oeh, U., 2009 Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity, Journal of Environmental Radioactivity 100: 232–240.
  • Babayan, G., Sakoyan, A., Sahakyan, G., 2019. Drinking water quality and health risk analysis in the mining impact zone, Armenia. Sustainable Water Resources Management 5: 1877–1886.
  • Bergmann, M., Sobral, O., Pratas, J., Graça, M.A., 2018. Uranium toxicity to aquatic invertebrates: a laboratory assay. Environ. Pollut. 239: 359–366.
  • Chen, L., Liu, J., Zhang,W., Zhou, J., Luo, D., Li, Z., 2021. Uranium(U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J. Hazard. Mater. 413, 125319.
  • Duggal, V., Rani, A., Mehra, R., Saini, K., Bajwa, B.S., 2017. Assessment of age-dependent radiation dose and toxicity risk due to intake of uranium through the ingestion of groundwater from Northern Rajasthan, India. Toxicol. Environ. Chem. 99, 3:516–524.
  • European Commission (EU), 1998. The Drinking Water Directive 98/83/EC.
  • Flett, L., Claire L. McLeod, Jessica L. McCarty, Barry J. Shaulis, Justin J. Fain, Mark P.S. Krekeler, 2021. Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. Environmental Research 194: 110619.
  • Giere, R., Kaltenmeier, R., Pourcelot, L., 2012. Uranium oxide and other airborne par- ticles deposited on cypress leaves close to a nuclear facility. J. Environ. Monit. 14:1264–1274.
  • Godoy, J.M., Ferreira, P.R., de Souza, E.M., da Silva, L.I., Bittencourt, I.C.S., Fraifeld, F., 2019. High uranium concentrations in the groundwater of the Rio de Janeiro State, Brazil, Mountainous Region. J. Braz. Chem. Soc. 30: (2).
  • Guilmette, R.A., Miller, G., Parkhurst, M.A., 2009. Capstone depleted uranium aerosol biokinetics, concentrations and doses. Health Physics 96, 328-342.
  • Jain, V. K., Pandya, R A, Pillai, S G., Shrivastav, P S, 2006. Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4] arene anchored chloromethylated, Talanta 70: 257–266.
  • Karpas, Z., 2014. Analytical Chemistry of Uranium. Environmental, Forensic, Nuclear and Toxicological Applications. CRC Press, Taylor & Francis Group, 6000, Broken Sound Parkway NW ISBN 13—978-1-4822-2060-2.
  • Liu, Y., Becker, B., Burdine, B., Sigmon, G.E., Burns, P.C., 2017. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide. RSC Adv. 7, 34: 21273–21280.
  • ME, 2015. Rules on DrinkingWater Quality and Inspection, Etc (In Korean). Ministry of Environment in Korea, Seoul.
  • Nilchi, A., T. Shariati Dehaghan, S., Garmarodi, R., 2013. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination 321: 67–71.
  • Noli, F., Argyro Dafnomili, Georgios Sarafidis, Catherine Dendrinou-Samara, Nikolaos Pliatsikas, Maria Kapnisti, 2022. Uranium and Thorium water decontamination via novel coated Cu-based nanoparticles; the role of chemistry and environmental implications, Science of the Total Environment 838:156050.
  • Pal, S., Mandal, I., 2019. Impact of aggregate quarrying and crushing on socio-ecological components of Chottanagpur plateuar fringe area of India. Environmental Earth Sciences 78, 661.
  • Reta, G. , Dong, X. , Li, Z. , Su, B. , Hu, X. , Bo, H. , Yu, D. , Wan, H. , Liu, J. , Li, Y. , Xu, G. , Wang, K. , Xu, S. , 2018. Environmental impact of phosphate mining and benefi- ciation: review. Int. J. Hydrol. 2, (4): 424–431.
  • Shin, W., Jungsun Oh, Sungwook Choung, Byong-Wook Cho, Kwang-Sik Lee, Uk Yun, Nam-Chil Woo, Hyun Koo Kim, 2016. Distribution and potential health risk of groundwater uranium in Korea, Chemosphere 163:108-115.
  • U.S. Environmental Protection Agancy (EPA), 2021. Drinking Water Requirements for States and PublicWater Systems: Drinking Water Regulations. United States Environmental Protection Agency (EPA), Washington, DC.
  • US EPA, Environmental Protection Agancy 2009. National Primary Drinking Water Regulations. Washington DC. Vigier, J.F., Freis, D., P¨oml, P., Prieur, D., Lajarge, P., Gardeur, S., et al., 2018. Optimization of uranium-doped americium oxide synthesis for space application. Inorg. Chem. 57 (8): 4317–4327.
  • Wang, Z., Zhang, L., Zhang, K., Lu, Y., Chen, J., Wang, S., Hu, B., Wang, X., 2022. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: a review. Chemosphere 287, 132313.
  • Winde, F., Brugge, D., Nidecker, A., Ruegg, U., 2017. Uranium from Africa-An overview on past and current mining activities: Re-appraising associated risks and chances in a global context, Journal of African Earth Sciences 129:759-778.
  • WHO, 2011. Guidelines for Drinking-water Quality, fourth ed. (Geneva).
  • Xiao, F., Li, H., Xie, P., Liu, J., Du, W., Li, L., Yang, S., Wu, Z., 2022. Colloidal templating of highly ordered porous amidoxime-functionalized hydrogel for intelligent treatment of uranium contaminated water. Chem. Eng. J. 431, 134141.
  • Zamora, M.L.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A.F., Hunt, W.C., Capello, K., 2009. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community. Arch. Environ. Occup. Health 64 (4): 228–241.
  • Zoriy, P., Ostapczuk, P., Dederichs, H., Höbig, J., Lennartz, R., Zoriy, M., 2010. Biomonitoring of environmental pollution by thorium and uranium in selected regions of the Republic of Kazakhstan, Journal of Environmental Radioactivity 101:414-420.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Genel Jeoloji
Bölüm Derlemeler
Yazarlar

Serpil Savcı 0000-0003-2015-2223

Güllü Kırat 0000-0002-1167-0574

Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 56 Sayı: 1

Kaynak Göster

APA Savcı, S., & Kırat, G. (2022). Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri. Geosound, 56(1), 81-91.
AMA Savcı S, Kırat G. Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri. Geosound. Aralık 2022;56(1):81-91.
Chicago Savcı, Serpil, ve Güllü Kırat. “Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri”. Geosound 56, sy. 1 (Aralık 2022): 81-91.
EndNote Savcı S, Kırat G (01 Aralık 2022) Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri. Geosound 56 1 81–91.
IEEE S. Savcı ve G. Kırat, “Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri”, Geosound, c. 56, sy. 1, ss. 81–91, 2022.
ISNAD Savcı, Serpil - Kırat, Güllü. “Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri”. Geosound 56/1 (Aralık 2022), 81-91.
JAMA Savcı S, Kırat G. Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri. Geosound. 2022;56:81–91.
MLA Savcı, Serpil ve Güllü Kırat. “Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri”. Geosound, c. 56, sy. 1, 2022, ss. 81-91.
Vancouver Savcı S, Kırat G. Nadir Toprak Elementi (NTE) Uranyumun Çevre Üzerine Olan Etkileri. Geosound. 2022;56(1):81-9.