Araştırma Makalesi
BibTex RIS Kaynak Göster

TİMOL ENKAPSÜLASYONU İÇİN TASARLANMIŞ KİTOSAN NANOPARTİKÜLLER

Yıl 2024, Cilt: 49 Sayı: 6, 1148 - 1161
https://doi.org/10.15237/gida.GD24055

Öz

Bu çalışmada, kitosan timol nanopartikülleri elektrohidrodinamik teknik kullanılarak tek adımlı, basit bir prosedür ile başarı ile elde edilmiştir. Elektrosprey timol yüklü kitosan nanopartiküllerin (KTNP’ler) morfolojik ve fiziksel karakterizasyonu, antioksidan ve antimikrobiyal aktivite değerlendirmeleri gerçekleştirilmiştir. KTNP örneklerinin antioksidan ve antimikrobiyal aktivitelerini belirlemek için sırasıyla ABTS yöntemi ve agar well difüzyon testi kullanılmıştır. Analiz sonuçları, KTNP’lerin B. cereus, S. aureus, E. coli ve S. typhimurium'a karşı etkili antimikrobiyal aktiviteye sahip olduğunu göstermiştir. KTNP’ler ABTS yöntemine göre % 90 radikal süpürme aktiviteye sahip oldukları görülmüştür. Biyolojik aktiviteye sahip KTNP’lerin gıda güveliği ve sağlık alanındaki pratik uygulamalarda etkili bir alternatif olabileceği görülmüştür. Bu çalışmada, biyopolimer nanopartiküller üretmek için elektrohidrodinamik atomizasyon tekniğinin kullanılması, timol benzeri uçucu aktif bileşenlerin enkapsülasyonu için yeni bir yaklaşım sunmaktadır.

Teşekkür

The author would like to thank the Integrated Research Center of Izmir Institute of Technology for SEM analysis and Bingöl University, the Center of Research and Application Center for characterization studies.

Kaynakça

  • Abyadeh, M., Zarchi, A. A. K., Faramarzi, M. A., Amani, A. (2017). Evaluation of Factors Affecting Size and Size Distribution of Chitosan-Electrosprayed Nanoparticles. Avicenna Journal of Medical Biotechnology 9(3): 126–32.
  • Ahmady, A. R., Razmjooee, K., Nazar, V., Saber-Samandari, S. (2023). Alginate Carrier as a Controlled Thymol Delivery System: Effect of Particle Size. Materials Chemistry and Physics, 294: 126982. https://doi.org/10.1016/ j.matchemphys.2022.126982
  • Amaregouda, Y., Kamanna K., Kamath, A. (2023). Multifunctional Bionanocomposite Films Based on Chitosan/Polyvinyl Alcohol with ZnO NPs and Carissa Carandas Extract Anthocyanin for Smart Packaging Materials. ACS Food Science and Technology 3(9): 1411–22. https://doi.org/ 10.1021/acsfoodscitech.3c00065
  • Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., Acosta, N. (2021). Chitosan: An Overview of its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
  • Arya, N., Chakraborty, S., Dube, N., Katti, D. S. (2008). Electrospraying: A Facile Technique for Synthesis of Chitosan-Based Micro/Nanospheres for Drug Delivery Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 88B(1): 17–31. https://doi.org/ 10.1002/jbm.b.31085
  • Arserim-Uçar, D. K. (2020). Nanocontainers for Food Safety. In: Smart Nanocontainers, Nguyen-Tri, P., Do, T., Nguyen, T. A. Elsevier, Netherlands,pp. 105-117. https://doi.org/ 10.1016/B978-0-12-816770-0.00007-1
  • Arserim-Uçar, D. K., Çabuk, B. (2020). Emerging Antibacterial and Antifungal Applications of Nanomaterials on Food Products. In Nanotoxicity, Rajendran, S., Nguyen, T. A., Shukla, R.K., Mukherjee, A., Godugu, C., Elsevier, Netherlands,pp. 415-453. https://doi.org/10.1016/B978-0-12-819943-5.00027-0
  • Arserim-Uçar, D. K. (2021). Electrosprayed Food Grade Particles for Food Safety Applications. 2nd International/12th National Food Engineering Congress, 25-27 November, Ankara Türkiye, pp165-170.
  • Arserim-Uçar, D. K. (2022). A Novel Approach to the Encapsulation of Thyme Essential Oil. Proceedings of the XIII International Scientific Agricultural Symposium''Agrosmy 2022''.06-09 October, Joharina, Bosnia and Herzegovina, pp 847-854.
  • Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., Uyar, T. (2017). Antibacterial Electrospun Zein Nanofibrous Web Encapsulating Thymol/ Cyclodextrin-Inclusion Complex for Food Packaging. Food Chemistry 233: 117–24. http://dx.doi.org/10.1016/j.foodchem.2017.04.095 Baldassarre, F., Schiavi, D., Ciarroni, S., Tagliavento, V., De Stradis, A., Vergaro, V., Suranna, G. P., Balestra, G. M., Ciccarella, G. (2023). Thymol-Nanoparticles as Effective Biocides Against the Quarantine Pathogen Xylella fastidiosa. Nanomaterials, 13(7), 1285. https://doi.org/10.3390/nano13071285
  • Bazana, M. T., Codevilla, C. F., de Menezes, C. R. (2019). Nanoencapsulation of Bioactive Compounds: Challenges and Perspectives. Current Opinion in Food Science, 26, 47-56. https://doi.org/ 10.1016/j.cofs.2019.03.005
  • Çakır, M. A., Icyer, N. C., Tornuk, F. (2020). Optimization of Production Parameters for Fabrication of Thymol-Loaded Chitosan Nanoparticles. International Journal of Biological Macromolecules 151: 230–38. https://doi.org/ 10.1016/j.ijbiomac.2020.02.096
  • Celebioglu, A., Yildiz, Z. I., Uyar, T. (2018). Thymol/cyclodextrin Inclusion Complex Nanofibrous Webs: Enhanced Water Solubility, High Thermal Stability and Antioxidant Property of Thymol. Food Research International, 106, 280-290. https://doi.org/10.1016/ j.foodres.2017.12.062
  • Chakraborty, S., Liao, I. C., Adler, A., Leong, K. W. (2009). Electrohydrodynamics: A Facile Technique to Fabricate Drug Delivery Systems. Advanced Drug Delivery Reviews, 61(12), 1043-1054. https://doi.org/10.1016/ j.addr.2009.07.013
  • Cheng, H., Chen, W., Jiang, J., Khan, M. A., Wusigale, Liang, L. (2023). A Comprehensive Review of Protein‐Based Carriers with Simple Structures for the Co‐Encapsulation of Bioactive Agents. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2017-2042. https://doi.org/ 10.1111/1541-4337.13139
  • Cohen, S. M., Eisenbrand, G., Fukushima, S., Gooderham, N. J., Guengerich, F. P., Hecht, S. S., Rietjens, I. M.C.M., Rosol, T. J., Davidsen, J. M., Harman, C. L., Lu, V., Taylor, S. V. (2021). FEMA GRAS Assessment of Natural Flavor Complexes: Origanum Oil, Thyme Oil and Related Phenol Derivative-Containing Flavoring Ingredients. Food and Chemical Toxicology 155: 112378. https://doi.org/10.1016/ j.fct.2021.112378
  • da Rosa, C. G., Maciel, M. V. O. B., de Carvalho, S. M., de Melo, A. P. Z., Jummes, B., da Silva, T., Martelli, S.M., Villeti, M.A., Bertoldi, F.C., Barreto, P.L.M. (2015). Characterization and Evaluation of Physicochemical and Antimicrobial Properties of zein Nanoparticles Loaded with Phenolics Monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 337-344. http://dx.doi.org/10.1016/ j.colsurfa.2015.05.019
  • Deng, L. L., Taxipalati, M., Que, F., Zhang, H., 2016. Physical Characterization and Antioxidant Activity of Thymol Solubilized Tween 80 Micelles. Scientific Reports 6, 38160, 1–8. https://doi.org/10.1038/srep38160
  • Doost, A. S., Van Camp, J., Dewettinck, K., Van der Meeren, P. (2019). Production of Thymol Nanoemulsions Stabilized using Quillaja Saponin as a Biosurfactant: Antioxidant Activity Enhancement. Food Chemistry, 293, 134-143. https://doi.org/10.1016/j.foodchem.2019.04.090
  • Echazú, M. I. A., Olivetti, C. E., Anesini, C., Pérez, C. J., Alvarez, G. S., Desimone, M. F. (2017). Development and Evaluation of Thymol-chitosan Hydrogels with Antimicrobial-Antioxidant Activity for Oral Local Delivery. Materials Science and Engineering: C, 81, 588-596. http://dx.doi.org/10.1016/ j.msec.2017.08.059
  • Escobar, A., Perez, M., Romanelli, G., Blustein, G. (2020). Thymol Bioactivity: A Review Focusing on Practical Applications. Arabian Journal of Chemistry 13: 9243–9269. https://doi.org/10.1016/j.arabjc.2020.11.009
  • Food and Drug Administration (FDA), (2024). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&sort=Sortterm&order=ASC&startrow=1&type=basic&search=thymol
  • Gao, Q., Bie, P., Tong, X., Zhang, B., Fu, X., Huang, Q. (2021). Complexation between High-Amylose Starch and Binary Aroma Compounds of Decanal and Thymol: Cooperativity or Competition? Journal of Agricultural and Food Chemistry. 69: 1166–11675. https://doi.org/ 10.1021/acs.jafc.1c01585
  • Gómez-Mascaraque, L. G., Hernández-Rojas, M., Tarancón, P., Tenon, M., Feuillère, N., Ruiz, J. F. V., Fiszman, S., López-Rubio, A. (2017). Impact of Microencapsulation within Electrosprayed Proteins on the Formulation of Green Tea Extract-Enriched Biscuits. LWT-Food Science and Technology, 81, 77-86. https://doi.org/10.1016/ j.lwt.2017.03.041
  • Gómez-Mascaraque, L. G., Sanchez, G., López-Rubio, A. (2016). Impact of Molecular Weight on the Formation of Electrosprayed Chitosan Microcapsules as Delivery Vehicles for Bioactive Compounds. Carbohydrate Polymers, 150: 121–130. http://dx.doi.org/10.1016/j.carbpol.2016.05.012
  • Gu, F., Geng, J., Li, M., Chang, J., Cui, Y. (2019) Synthesis of Chitosan-Ignosulfonate Composite as an Adsorbent for Dyes and Metal Ions Removal from Wastewater. ACS Omega 4(25): 21421–21430. https://doi.org/10.1021/ acsomega.9b03128
  • Guo, X., Chu, L., Gu, T., Purohit, S., Kou, L., Zhang, B.(2022). Long-Term Quality Retention and Decay Inhibition of Chestnut Using Thymol Loaded Chitosan Nanoparticle. Food Chemistry 374: 131781,1-8, https://doi.org/10.1016/ j.foodchem.2021.131781
  • Kumar, M. N.V.R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., Domb A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives.Chemical Reviews 104(12): 6017–84. https://doi.org/10.1021/cr030441b
  • Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grøndahl, L. (2007). Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541. https://doi.org/10.1021/bm070014y
  • Leceta, I., Guerrero, P., de La Caba, K. (2013). Functional Properties of Chitosan-Based Films. Carbohydrate Polymers 93(1): 339–346. http://dx.doi.org/10.1016/j.carbpol.2012.04.031
  • Li, J., Xu, X., Chen, Z., Wang, T., Lu, Z., Hu, W., Wang, L. (2018). Zein/gum Arabic Nanoparticle-Stabilized Pickering Emulsion with Thymol as an Antibacterial Delivery System. Carbohydrate Polymers, 200, 416-426. https://doi.org/10.1016/ j.carbpol.2018.08.025
  • Liu, T., Liu L. (2020). Fabrication and Characterization of Chitosan Nanoemulsions Loading Thymol or Thyme Essential Oil for the Preservation of Refrigerated Pork. International Journal of Biological Macromolecules 162: 1509–1515. https://doi.org/10.1016/j.ijbiomac.2020.07.207
  • Liu, Y., Li, S., Li, H., Hossen, M. A., Sameen, D. E., Dai, J., Qin,W., Lee, K. (2021). Synthesis and Properties of Core-shell Thymol-loaded Zein/shellac Nanoparticles by Coaxial Electrospray as Edible Coatings. Materials & Design, 212, 110214. https://doi.org/10.1016/ j.matdes.2021.110214
  • Medina, E., Caroa, N., Abugocha, L., Gamboa, A., Díaz-Dosquec, M., Tapia, C. (2019). Chitosan Thymol Nanoparticles Improve the Antimicrobial Effect and the Water Vapour Barrier of Chitosan-Quinoa Protein Films. Journal of Food Engineering 240, 191–98. https://doi.org/10.1016/j.jfoodeng.2018.07.023
  • Milovanovic, S., Markovic, D., Aksentijevic, K., Stojanovic, D. B., Ivanovic, J., Zizovic, I. (2016). Application of Cellulose Acetate for Controlled Release of Thymol. Carbohydrate Polymers, 147, 344-353. Http://Dx.Doi.Org/10.1016/ J.Carbpol.2016.03.093
  • Moraru, C., Mincea, M. M., Frandes, M., Timar, B., Ostafe, V. (2018). A Meta-Analysis on Randomised Controlled Clinical Trials Evaluating the Effect of the Dietary Supplement Chitosan on Weight Loss, Lipid Parameters and Blood Pressure. Medicina, 54(6),109, 1–15. https://doi:10.3390/medicina54060109
  • Mourya, V. K., Inamdar, N. N. (2008). Chitosan-Modifications and Applications: Opportunities Galore. Reactive & Functional Polymers 68(6): 1013–51. https://doi:10.1016/ j.reactfunctpolym.2008.03.002 Mucha, M., Pawlak, A. (2002). Complex Study on Chitosan Degradability. Polimery, 47(7-8), 509-516.
  • Nandi, T., Khanna, M. (2022). Anti-Viral Activity of Thymol against Influenza A Virus. EC Microbiology, 18: 98–103.
  • Niu, B., Shao, P., Luo, Y., Sun, P. (2020). Recent Advances of Electrosprayed Particles as Encapsulation Systems of Bioactives for Food Application. Food Hydrocolloids, 99, 105376. https://doi.org/10.1016/j.foodhyd.2019.105376
  • Ojeda-Piedra, S. A., Quintanar-Guerrero, D., Cornejo-Villegas, M. A., Zambrano-Zaragoza, M. L. (2023). A Green Method for Nanoencapsulation of Thymol in Chitosan–Gelatin with Antioxidant Capacity. Food and Bioprocess Technology. https://doi.org/10.1007/ s11947-023-03240-9
  • Pan, K., Chen, H., Davidson, P. M., Zhong, Q. (2014).Thymol Nanoencapsulated by Sodium Caseinate: Physical and Antilisterial Properties. Journal of Agricultural and Food Chemistry, 62, 1649−1657. dx.doi.org/10.1021/jf4055402
  • Pan, X., Junejo, S.A., Tan, C.P., Zhang, B., Fu, X., Huanga, Q. (2022). Effect of Potassium Salts on the Structure of γ -Cyclodextrin MOF and the Encapsulation Properties with Thymol. Journal of the Science of Food and Agriculture, 102, 6387–6396. http://dx.doi.org/10.1002/jsfa.12004
  • Pirbalouti, A. G., Hashemi, M., and Ghahfarokhi, F. T. (2013). Essential Oil and Chemical Compositions of Wild and Cultivated Thymus Daenensis Celak and Thymus vulgaris L. Industrial Crops and Products, 48, 43-48. http://dx.doi.org/10.1016/j.indcrop.2013.04.004
  • Piri‐Gharaghie, T., Beiranvand, S., Riahi, A., Shirin, N. J., Badmasti, F., Mirzaie, A., Elahianfar, Y., Ghahari, S., Ghahari, S., Pasban, K., Hajrasouliha, S. (2022). Fabrication and Characterization of Thymol-Loaded Chitosan Nanogels: Improved Antibacterial And Anti‐Biofilm Activities with Negligible Cytotoxicity. Chemistry & biodiversity, 19(3), e202100426, https://doi.org/10.1002/cbdv.202100426
  • Qoorchi Moheb Seraj, F., Heravi‑Faz, N., Soltani, A., Ahmadi, S. S., Shahbeiki, F., Talebpour, A., Afshari, A. R., Ferns, G. A., Bahrami, A.(2022). Thymol has Anticancer Effects in U-87 Human Malignant Glioblastoma Cells. Molecular Biology Reports 49(10): 9623–32. https://doi.org/10.1007/s11033-022-07867-3
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. 51. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Sahani, S., Sharma, Y. C. (2021). Advancements in Applications of Nanotechnology in Global Food Industry. Food Chemistry 342: 128318,1-12. https://doi.org/10.1016/j.foodchem.2020.128318
  • Sepahvand, S., Amiri, S., Radi, M., Amiri, M. J. (2022). Effect of Thymol and Nanostructured Lipid Carriers (NLCs) Incorporated with Thymol as Antimicrobial Agents in Sausage. Sustainability. 14,1973, 1-12. https://doi.org/10.3390/ su14041973
  • Sharma, K., Munjal, M., Sharma, R. K., Sharma, M. (2023). Thymol Encapsulated Chitosan-Aloe Vera Films for Antimicrobial Infection. International Journal of Biological Macromolecules 235, 123897. https://doi.org/10.1016/ j.ijbiomac.2023.123897
  • Sheorain, J., Mehra, M., Thakur, R., Grewal, S., Kumari, S.(2019). In Vitro Anti-Inflammatory and Antioxidant Potential of Thymol Loaded Bipolymeric (tragacanth gum/chitosan) Nanocarrier. International Journal of Biological Macromolecules. 125: 1069–1074. https://doi.org/ 10.1016/j.ijbiomac.2018.12.095
  • Saatkamp, R. H., Sanches, M. P., Gambin, J. P. D., Amaral, B. R., de Farias, N. S., Caon, T., Müller, C.M.O., Parize, A. L. (2023). Development of Thymol Nanoemulsions with Potential Application in Oral Infections. Journal of Drug Delivery Science and Technology, 87, 104855. https://doi.org/10.1016/j.jddst.2023.104855
  • Songsurang, K., Praphairaksit, N., Siraleartmukul, K., Muangsin, N. (2011). Electrospray Fabrication of Doxorubicin-Chitosan-Tripolyphosphate Nanoparticles for Delivery of Doxorubicin. Archives of Pharmacal Research, 34, 583-592. https://doi.org/10.1007/s12272-011-0408-5
  • Sutharsan, J., Boyer, C. A., Zhao, J. (2023). Effect of Molecular Weight and Drying Temperature on the Physicochemical Properties of Chitosan Edible Film. JSFA Reports, 3:387–396. https://doi.org/10.1002/jsf2.142
  • Talesh, A. A., Amiri, S., Radi, M., Hosseinifarahi, M. (2024). Effect of Nanocomposite Alginate-Based Edible Coatings Containing Thymol-Nanoemulsion and/or Thymol-Loaded Nanostructured Lipid Carriers on the Microbial and Physicochemical Properties of Carrot. International Journal of Biological Macromolecules: 129196. https://doi.org/10.1016/ j.ijbiomac.2023.129196
  • Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J. M., Anraku, M. (2009). Antioxidant Properties of Some Different Molecular Weight Chitosans. Carbohydrate Research, 344(13), 1690-1696. https://doi.org/10.1016/ j.carres.2009.05.006
  • Viacava, G. E., Ayala-Zavala, J. F., González-Aguilar, G. A., Ansorena, M. R. (2018). Effect of Free and Microencapsulated Thyme Essential Oil on Quality Attributes of Minimally Processed Lettuce. Postharvest Biology and Technology, 145, 125-133. https://doi.org/10.1016/ j.postharvbio.2018.07.004
  • Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., Zhao, K. (2020). Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences, 21, 487,1-26. https://doi:10.3390/ijms21020487
  • Wang, X., Hu, Y., Zhang, Z., Zhang, B.(2022). The Application of Thymol-Loaded Chitosan Nanoparticles to Control the Biodeterioration of Cultural Heritage Sites. Journal of Cultural Heritage 53: 206–11. https://doi.org/10.1016/ j.culher.2021.12.002
  • Wattanasatcha, A., Rengpipat, S., Wanichwecharungruang, S.(2012). Thymol Nanospheres as an Effective Anti-Bacterial Agent. International Journal of Pharmaceutics 434, 360–365. http://dx.doi.org/10.1016/ j.ijpharm.2012.06.017
  • Xu, Y., Chen, L., Zhang, Y., Huang, Y., Cao, J., Jiang, W. (2023). Antimicrobial and Controlled Release Properties of Nanocomposite Film Containing Thymol and Carvacrol Loaded UiO-66-NH2 for Active Food Packaging. Food Chemistry, 404, Part A, 134427,1-9. https://doi.org/10.1016/j.foodchem.2022.134427
  • Zabihi, M., Shafaei, M., Ramezani, V., Dara, T., Mirzaie, F. (2023). Preparation of Thymol Nanoliposome and Solid Lipid Nanoparticle and Evaluation of Their Inhibitory Effects on Leishmania Major Promastigotes. Advances in Pharmacology and Therapeutics Journal, 3(1): 49–60. https://doi.org/10.18502/aptj.v3i1.12501
  • Zhang, S., Kawakami, K. (2010). One-Step Preparation of Chitosan Solid Nanoparticles by Electrospray Deposition. International Journal of Pharmaceutics 397(1–2): 211–17. https://doi.org/10.1016/j.ijpharm.2010.07.007
  • Zhang, Y., Tan, Y., OuYang, Q., Duan, B., Wang, Z., Meng, K., Tan, X., Tao, N. (2023). γ-Cyclodextrin Encapsulated Thymol for Citrus Preservation and Its Possible Mechanism against Penicillium Digitatum. Pesticide Biochemistry and Physiology 194: 105501,1-11. https://doi.org/ 10.1016/j.pestbp.2023.105501
  • Zhao, X., Zhang, Y., Chen, L., Ma, Z., Zhang, B. (2023). Chitosan-Thymol Nanoparticle with pH Responsiveness as a Potential Intelligent Botanical Fungicide Against Botrytis cinerea. Pesticide Biochemistry and Physiology 195: 105571. https://doi.org/10.1016/j.pestbp.2023.105571
  • Zhou, J., Kong, L. (2023). Encapsulation and Retention Profile of Thymol in the Preformed “empty” V‐type Starch Inclusion Complex. Food Frontiers, 4, 902-910. https://doi.org/10.1002/ fft2.222
  • Zhou, W., Zhang, Y., Li, R., Peng, S., Ruan, R., Li, J., Liu, W. (2021). Fabrication of Caseinate Stabilized Thymol Nanosuspensions via the pH-Driven Method: Enhancement in Water Solubility of Thymol. (2021). Foods, 10(5),1074,1-13. https://doi.org/10.3390/foods10051074
  • Zhu, Z., Yu, M., Ren, R., Wang, H., Kong, B. (2024). Thymol Incorporation within Chitosan/Polyethylene Oxide Nanofibers by Concurrent Coaxial Electrospinning and in-Situ Crosslinking from Core-out for Active Antibacterial Packaging.Carbohydrate Polymers 323: 121381. https://doi.org/10.1016/ j.carbpol.2023.121381

ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL

Yıl 2024, Cilt: 49 Sayı: 6, 1148 - 1161
https://doi.org/10.15237/gida.GD24055

Öz

This study successfully obtained chitosan thymol nanoparticles using an electrohydrodynamic technique, which is a simple one-step procedure. The morphological and physical characterization, antioxidant, and antimicrobial activity assessments of electrosprayed thymol-loaded chitosan nanoparticles (CTNPs) were carried out. The ABTS assay and the agar well diffusion test were used to determine the antioxidant and antimicrobial activities of the CTNP samples, respectively. The results showed that CTNPs possessed efficient antimicrobial capacity against B. cereus, S. aureus, E. coli, and S. typhimurium. CTNPs indicated a radical scavenging activity of 90% regarding the ABTS assay. CTNPs with biological activities could be an effective alternative for practical food safety and health applications. In this study, the use of electrohydrodynamic atomization technique to produce biopolymer nanoparticles present a novel approach for encapsulating thymol-like volatile active agents.

Kaynakça

  • Abyadeh, M., Zarchi, A. A. K., Faramarzi, M. A., Amani, A. (2017). Evaluation of Factors Affecting Size and Size Distribution of Chitosan-Electrosprayed Nanoparticles. Avicenna Journal of Medical Biotechnology 9(3): 126–32.
  • Ahmady, A. R., Razmjooee, K., Nazar, V., Saber-Samandari, S. (2023). Alginate Carrier as a Controlled Thymol Delivery System: Effect of Particle Size. Materials Chemistry and Physics, 294: 126982. https://doi.org/10.1016/ j.matchemphys.2022.126982
  • Amaregouda, Y., Kamanna K., Kamath, A. (2023). Multifunctional Bionanocomposite Films Based on Chitosan/Polyvinyl Alcohol with ZnO NPs and Carissa Carandas Extract Anthocyanin for Smart Packaging Materials. ACS Food Science and Technology 3(9): 1411–22. https://doi.org/ 10.1021/acsfoodscitech.3c00065
  • Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., Acosta, N. (2021). Chitosan: An Overview of its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
  • Arya, N., Chakraborty, S., Dube, N., Katti, D. S. (2008). Electrospraying: A Facile Technique for Synthesis of Chitosan-Based Micro/Nanospheres for Drug Delivery Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 88B(1): 17–31. https://doi.org/ 10.1002/jbm.b.31085
  • Arserim-Uçar, D. K. (2020). Nanocontainers for Food Safety. In: Smart Nanocontainers, Nguyen-Tri, P., Do, T., Nguyen, T. A. Elsevier, Netherlands,pp. 105-117. https://doi.org/ 10.1016/B978-0-12-816770-0.00007-1
  • Arserim-Uçar, D. K., Çabuk, B. (2020). Emerging Antibacterial and Antifungal Applications of Nanomaterials on Food Products. In Nanotoxicity, Rajendran, S., Nguyen, T. A., Shukla, R.K., Mukherjee, A., Godugu, C., Elsevier, Netherlands,pp. 415-453. https://doi.org/10.1016/B978-0-12-819943-5.00027-0
  • Arserim-Uçar, D. K. (2021). Electrosprayed Food Grade Particles for Food Safety Applications. 2nd International/12th National Food Engineering Congress, 25-27 November, Ankara Türkiye, pp165-170.
  • Arserim-Uçar, D. K. (2022). A Novel Approach to the Encapsulation of Thyme Essential Oil. Proceedings of the XIII International Scientific Agricultural Symposium''Agrosmy 2022''.06-09 October, Joharina, Bosnia and Herzegovina, pp 847-854.
  • Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., Uyar, T. (2017). Antibacterial Electrospun Zein Nanofibrous Web Encapsulating Thymol/ Cyclodextrin-Inclusion Complex for Food Packaging. Food Chemistry 233: 117–24. http://dx.doi.org/10.1016/j.foodchem.2017.04.095 Baldassarre, F., Schiavi, D., Ciarroni, S., Tagliavento, V., De Stradis, A., Vergaro, V., Suranna, G. P., Balestra, G. M., Ciccarella, G. (2023). Thymol-Nanoparticles as Effective Biocides Against the Quarantine Pathogen Xylella fastidiosa. Nanomaterials, 13(7), 1285. https://doi.org/10.3390/nano13071285
  • Bazana, M. T., Codevilla, C. F., de Menezes, C. R. (2019). Nanoencapsulation of Bioactive Compounds: Challenges and Perspectives. Current Opinion in Food Science, 26, 47-56. https://doi.org/ 10.1016/j.cofs.2019.03.005
  • Çakır, M. A., Icyer, N. C., Tornuk, F. (2020). Optimization of Production Parameters for Fabrication of Thymol-Loaded Chitosan Nanoparticles. International Journal of Biological Macromolecules 151: 230–38. https://doi.org/ 10.1016/j.ijbiomac.2020.02.096
  • Celebioglu, A., Yildiz, Z. I., Uyar, T. (2018). Thymol/cyclodextrin Inclusion Complex Nanofibrous Webs: Enhanced Water Solubility, High Thermal Stability and Antioxidant Property of Thymol. Food Research International, 106, 280-290. https://doi.org/10.1016/ j.foodres.2017.12.062
  • Chakraborty, S., Liao, I. C., Adler, A., Leong, K. W. (2009). Electrohydrodynamics: A Facile Technique to Fabricate Drug Delivery Systems. Advanced Drug Delivery Reviews, 61(12), 1043-1054. https://doi.org/10.1016/ j.addr.2009.07.013
  • Cheng, H., Chen, W., Jiang, J., Khan, M. A., Wusigale, Liang, L. (2023). A Comprehensive Review of Protein‐Based Carriers with Simple Structures for the Co‐Encapsulation of Bioactive Agents. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2017-2042. https://doi.org/ 10.1111/1541-4337.13139
  • Cohen, S. M., Eisenbrand, G., Fukushima, S., Gooderham, N. J., Guengerich, F. P., Hecht, S. S., Rietjens, I. M.C.M., Rosol, T. J., Davidsen, J. M., Harman, C. L., Lu, V., Taylor, S. V. (2021). FEMA GRAS Assessment of Natural Flavor Complexes: Origanum Oil, Thyme Oil and Related Phenol Derivative-Containing Flavoring Ingredients. Food and Chemical Toxicology 155: 112378. https://doi.org/10.1016/ j.fct.2021.112378
  • da Rosa, C. G., Maciel, M. V. O. B., de Carvalho, S. M., de Melo, A. P. Z., Jummes, B., da Silva, T., Martelli, S.M., Villeti, M.A., Bertoldi, F.C., Barreto, P.L.M. (2015). Characterization and Evaluation of Physicochemical and Antimicrobial Properties of zein Nanoparticles Loaded with Phenolics Monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 337-344. http://dx.doi.org/10.1016/ j.colsurfa.2015.05.019
  • Deng, L. L., Taxipalati, M., Que, F., Zhang, H., 2016. Physical Characterization and Antioxidant Activity of Thymol Solubilized Tween 80 Micelles. Scientific Reports 6, 38160, 1–8. https://doi.org/10.1038/srep38160
  • Doost, A. S., Van Camp, J., Dewettinck, K., Van der Meeren, P. (2019). Production of Thymol Nanoemulsions Stabilized using Quillaja Saponin as a Biosurfactant: Antioxidant Activity Enhancement. Food Chemistry, 293, 134-143. https://doi.org/10.1016/j.foodchem.2019.04.090
  • Echazú, M. I. A., Olivetti, C. E., Anesini, C., Pérez, C. J., Alvarez, G. S., Desimone, M. F. (2017). Development and Evaluation of Thymol-chitosan Hydrogels with Antimicrobial-Antioxidant Activity for Oral Local Delivery. Materials Science and Engineering: C, 81, 588-596. http://dx.doi.org/10.1016/ j.msec.2017.08.059
  • Escobar, A., Perez, M., Romanelli, G., Blustein, G. (2020). Thymol Bioactivity: A Review Focusing on Practical Applications. Arabian Journal of Chemistry 13: 9243–9269. https://doi.org/10.1016/j.arabjc.2020.11.009
  • Food and Drug Administration (FDA), (2024). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&sort=Sortterm&order=ASC&startrow=1&type=basic&search=thymol
  • Gao, Q., Bie, P., Tong, X., Zhang, B., Fu, X., Huang, Q. (2021). Complexation between High-Amylose Starch and Binary Aroma Compounds of Decanal and Thymol: Cooperativity or Competition? Journal of Agricultural and Food Chemistry. 69: 1166–11675. https://doi.org/ 10.1021/acs.jafc.1c01585
  • Gómez-Mascaraque, L. G., Hernández-Rojas, M., Tarancón, P., Tenon, M., Feuillère, N., Ruiz, J. F. V., Fiszman, S., López-Rubio, A. (2017). Impact of Microencapsulation within Electrosprayed Proteins on the Formulation of Green Tea Extract-Enriched Biscuits. LWT-Food Science and Technology, 81, 77-86. https://doi.org/10.1016/ j.lwt.2017.03.041
  • Gómez-Mascaraque, L. G., Sanchez, G., López-Rubio, A. (2016). Impact of Molecular Weight on the Formation of Electrosprayed Chitosan Microcapsules as Delivery Vehicles for Bioactive Compounds. Carbohydrate Polymers, 150: 121–130. http://dx.doi.org/10.1016/j.carbpol.2016.05.012
  • Gu, F., Geng, J., Li, M., Chang, J., Cui, Y. (2019) Synthesis of Chitosan-Ignosulfonate Composite as an Adsorbent for Dyes and Metal Ions Removal from Wastewater. ACS Omega 4(25): 21421–21430. https://doi.org/10.1021/ acsomega.9b03128
  • Guo, X., Chu, L., Gu, T., Purohit, S., Kou, L., Zhang, B.(2022). Long-Term Quality Retention and Decay Inhibition of Chestnut Using Thymol Loaded Chitosan Nanoparticle. Food Chemistry 374: 131781,1-8, https://doi.org/10.1016/ j.foodchem.2021.131781
  • Kumar, M. N.V.R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., Domb A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives.Chemical Reviews 104(12): 6017–84. https://doi.org/10.1021/cr030441b
  • Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grøndahl, L. (2007). Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541. https://doi.org/10.1021/bm070014y
  • Leceta, I., Guerrero, P., de La Caba, K. (2013). Functional Properties of Chitosan-Based Films. Carbohydrate Polymers 93(1): 339–346. http://dx.doi.org/10.1016/j.carbpol.2012.04.031
  • Li, J., Xu, X., Chen, Z., Wang, T., Lu, Z., Hu, W., Wang, L. (2018). Zein/gum Arabic Nanoparticle-Stabilized Pickering Emulsion with Thymol as an Antibacterial Delivery System. Carbohydrate Polymers, 200, 416-426. https://doi.org/10.1016/ j.carbpol.2018.08.025
  • Liu, T., Liu L. (2020). Fabrication and Characterization of Chitosan Nanoemulsions Loading Thymol or Thyme Essential Oil for the Preservation of Refrigerated Pork. International Journal of Biological Macromolecules 162: 1509–1515. https://doi.org/10.1016/j.ijbiomac.2020.07.207
  • Liu, Y., Li, S., Li, H., Hossen, M. A., Sameen, D. E., Dai, J., Qin,W., Lee, K. (2021). Synthesis and Properties of Core-shell Thymol-loaded Zein/shellac Nanoparticles by Coaxial Electrospray as Edible Coatings. Materials & Design, 212, 110214. https://doi.org/10.1016/ j.matdes.2021.110214
  • Medina, E., Caroa, N., Abugocha, L., Gamboa, A., Díaz-Dosquec, M., Tapia, C. (2019). Chitosan Thymol Nanoparticles Improve the Antimicrobial Effect and the Water Vapour Barrier of Chitosan-Quinoa Protein Films. Journal of Food Engineering 240, 191–98. https://doi.org/10.1016/j.jfoodeng.2018.07.023
  • Milovanovic, S., Markovic, D., Aksentijevic, K., Stojanovic, D. B., Ivanovic, J., Zizovic, I. (2016). Application of Cellulose Acetate for Controlled Release of Thymol. Carbohydrate Polymers, 147, 344-353. Http://Dx.Doi.Org/10.1016/ J.Carbpol.2016.03.093
  • Moraru, C., Mincea, M. M., Frandes, M., Timar, B., Ostafe, V. (2018). A Meta-Analysis on Randomised Controlled Clinical Trials Evaluating the Effect of the Dietary Supplement Chitosan on Weight Loss, Lipid Parameters and Blood Pressure. Medicina, 54(6),109, 1–15. https://doi:10.3390/medicina54060109
  • Mourya, V. K., Inamdar, N. N. (2008). Chitosan-Modifications and Applications: Opportunities Galore. Reactive & Functional Polymers 68(6): 1013–51. https://doi:10.1016/ j.reactfunctpolym.2008.03.002 Mucha, M., Pawlak, A. (2002). Complex Study on Chitosan Degradability. Polimery, 47(7-8), 509-516.
  • Nandi, T., Khanna, M. (2022). Anti-Viral Activity of Thymol against Influenza A Virus. EC Microbiology, 18: 98–103.
  • Niu, B., Shao, P., Luo, Y., Sun, P. (2020). Recent Advances of Electrosprayed Particles as Encapsulation Systems of Bioactives for Food Application. Food Hydrocolloids, 99, 105376. https://doi.org/10.1016/j.foodhyd.2019.105376
  • Ojeda-Piedra, S. A., Quintanar-Guerrero, D., Cornejo-Villegas, M. A., Zambrano-Zaragoza, M. L. (2023). A Green Method for Nanoencapsulation of Thymol in Chitosan–Gelatin with Antioxidant Capacity. Food and Bioprocess Technology. https://doi.org/10.1007/ s11947-023-03240-9
  • Pan, K., Chen, H., Davidson, P. M., Zhong, Q. (2014).Thymol Nanoencapsulated by Sodium Caseinate: Physical and Antilisterial Properties. Journal of Agricultural and Food Chemistry, 62, 1649−1657. dx.doi.org/10.1021/jf4055402
  • Pan, X., Junejo, S.A., Tan, C.P., Zhang, B., Fu, X., Huanga, Q. (2022). Effect of Potassium Salts on the Structure of γ -Cyclodextrin MOF and the Encapsulation Properties with Thymol. Journal of the Science of Food and Agriculture, 102, 6387–6396. http://dx.doi.org/10.1002/jsfa.12004
  • Pirbalouti, A. G., Hashemi, M., and Ghahfarokhi, F. T. (2013). Essential Oil and Chemical Compositions of Wild and Cultivated Thymus Daenensis Celak and Thymus vulgaris L. Industrial Crops and Products, 48, 43-48. http://dx.doi.org/10.1016/j.indcrop.2013.04.004
  • Piri‐Gharaghie, T., Beiranvand, S., Riahi, A., Shirin, N. J., Badmasti, F., Mirzaie, A., Elahianfar, Y., Ghahari, S., Ghahari, S., Pasban, K., Hajrasouliha, S. (2022). Fabrication and Characterization of Thymol-Loaded Chitosan Nanogels: Improved Antibacterial And Anti‐Biofilm Activities with Negligible Cytotoxicity. Chemistry & biodiversity, 19(3), e202100426, https://doi.org/10.1002/cbdv.202100426
  • Qoorchi Moheb Seraj, F., Heravi‑Faz, N., Soltani, A., Ahmadi, S. S., Shahbeiki, F., Talebpour, A., Afshari, A. R., Ferns, G. A., Bahrami, A.(2022). Thymol has Anticancer Effects in U-87 Human Malignant Glioblastoma Cells. Molecular Biology Reports 49(10): 9623–32. https://doi.org/10.1007/s11033-022-07867-3
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. 51. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Sahani, S., Sharma, Y. C. (2021). Advancements in Applications of Nanotechnology in Global Food Industry. Food Chemistry 342: 128318,1-12. https://doi.org/10.1016/j.foodchem.2020.128318
  • Sepahvand, S., Amiri, S., Radi, M., Amiri, M. J. (2022). Effect of Thymol and Nanostructured Lipid Carriers (NLCs) Incorporated with Thymol as Antimicrobial Agents in Sausage. Sustainability. 14,1973, 1-12. https://doi.org/10.3390/ su14041973
  • Sharma, K., Munjal, M., Sharma, R. K., Sharma, M. (2023). Thymol Encapsulated Chitosan-Aloe Vera Films for Antimicrobial Infection. International Journal of Biological Macromolecules 235, 123897. https://doi.org/10.1016/ j.ijbiomac.2023.123897
  • Sheorain, J., Mehra, M., Thakur, R., Grewal, S., Kumari, S.(2019). In Vitro Anti-Inflammatory and Antioxidant Potential of Thymol Loaded Bipolymeric (tragacanth gum/chitosan) Nanocarrier. International Journal of Biological Macromolecules. 125: 1069–1074. https://doi.org/ 10.1016/j.ijbiomac.2018.12.095
  • Saatkamp, R. H., Sanches, M. P., Gambin, J. P. D., Amaral, B. R., de Farias, N. S., Caon, T., Müller, C.M.O., Parize, A. L. (2023). Development of Thymol Nanoemulsions with Potential Application in Oral Infections. Journal of Drug Delivery Science and Technology, 87, 104855. https://doi.org/10.1016/j.jddst.2023.104855
  • Songsurang, K., Praphairaksit, N., Siraleartmukul, K., Muangsin, N. (2011). Electrospray Fabrication of Doxorubicin-Chitosan-Tripolyphosphate Nanoparticles for Delivery of Doxorubicin. Archives of Pharmacal Research, 34, 583-592. https://doi.org/10.1007/s12272-011-0408-5
  • Sutharsan, J., Boyer, C. A., Zhao, J. (2023). Effect of Molecular Weight and Drying Temperature on the Physicochemical Properties of Chitosan Edible Film. JSFA Reports, 3:387–396. https://doi.org/10.1002/jsf2.142
  • Talesh, A. A., Amiri, S., Radi, M., Hosseinifarahi, M. (2024). Effect of Nanocomposite Alginate-Based Edible Coatings Containing Thymol-Nanoemulsion and/or Thymol-Loaded Nanostructured Lipid Carriers on the Microbial and Physicochemical Properties of Carrot. International Journal of Biological Macromolecules: 129196. https://doi.org/10.1016/ j.ijbiomac.2023.129196
  • Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J. M., Anraku, M. (2009). Antioxidant Properties of Some Different Molecular Weight Chitosans. Carbohydrate Research, 344(13), 1690-1696. https://doi.org/10.1016/ j.carres.2009.05.006
  • Viacava, G. E., Ayala-Zavala, J. F., González-Aguilar, G. A., Ansorena, M. R. (2018). Effect of Free and Microencapsulated Thyme Essential Oil on Quality Attributes of Minimally Processed Lettuce. Postharvest Biology and Technology, 145, 125-133. https://doi.org/10.1016/ j.postharvbio.2018.07.004
  • Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., Zhao, K. (2020). Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences, 21, 487,1-26. https://doi:10.3390/ijms21020487
  • Wang, X., Hu, Y., Zhang, Z., Zhang, B.(2022). The Application of Thymol-Loaded Chitosan Nanoparticles to Control the Biodeterioration of Cultural Heritage Sites. Journal of Cultural Heritage 53: 206–11. https://doi.org/10.1016/ j.culher.2021.12.002
  • Wattanasatcha, A., Rengpipat, S., Wanichwecharungruang, S.(2012). Thymol Nanospheres as an Effective Anti-Bacterial Agent. International Journal of Pharmaceutics 434, 360–365. http://dx.doi.org/10.1016/ j.ijpharm.2012.06.017
  • Xu, Y., Chen, L., Zhang, Y., Huang, Y., Cao, J., Jiang, W. (2023). Antimicrobial and Controlled Release Properties of Nanocomposite Film Containing Thymol and Carvacrol Loaded UiO-66-NH2 for Active Food Packaging. Food Chemistry, 404, Part A, 134427,1-9. https://doi.org/10.1016/j.foodchem.2022.134427
  • Zabihi, M., Shafaei, M., Ramezani, V., Dara, T., Mirzaie, F. (2023). Preparation of Thymol Nanoliposome and Solid Lipid Nanoparticle and Evaluation of Their Inhibitory Effects on Leishmania Major Promastigotes. Advances in Pharmacology and Therapeutics Journal, 3(1): 49–60. https://doi.org/10.18502/aptj.v3i1.12501
  • Zhang, S., Kawakami, K. (2010). One-Step Preparation of Chitosan Solid Nanoparticles by Electrospray Deposition. International Journal of Pharmaceutics 397(1–2): 211–17. https://doi.org/10.1016/j.ijpharm.2010.07.007
  • Zhang, Y., Tan, Y., OuYang, Q., Duan, B., Wang, Z., Meng, K., Tan, X., Tao, N. (2023). γ-Cyclodextrin Encapsulated Thymol for Citrus Preservation and Its Possible Mechanism against Penicillium Digitatum. Pesticide Biochemistry and Physiology 194: 105501,1-11. https://doi.org/ 10.1016/j.pestbp.2023.105501
  • Zhao, X., Zhang, Y., Chen, L., Ma, Z., Zhang, B. (2023). Chitosan-Thymol Nanoparticle with pH Responsiveness as a Potential Intelligent Botanical Fungicide Against Botrytis cinerea. Pesticide Biochemistry and Physiology 195: 105571. https://doi.org/10.1016/j.pestbp.2023.105571
  • Zhou, J., Kong, L. (2023). Encapsulation and Retention Profile of Thymol in the Preformed “empty” V‐type Starch Inclusion Complex. Food Frontiers, 4, 902-910. https://doi.org/10.1002/ fft2.222
  • Zhou, W., Zhang, Y., Li, R., Peng, S., Ruan, R., Li, J., Liu, W. (2021). Fabrication of Caseinate Stabilized Thymol Nanosuspensions via the pH-Driven Method: Enhancement in Water Solubility of Thymol. (2021). Foods, 10(5),1074,1-13. https://doi.org/10.3390/foods10051074
  • Zhu, Z., Yu, M., Ren, R., Wang, H., Kong, B. (2024). Thymol Incorporation within Chitosan/Polyethylene Oxide Nanofibers by Concurrent Coaxial Electrospinning and in-Situ Crosslinking from Core-out for Active Antibacterial Packaging.Carbohydrate Polymers 323: 121381. https://doi.org/10.1016/ j.carbpol.2023.121381
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Gıda Teknolojileri
Bölüm Makaleler
Yazarlar

Dılhun Keriman Arserim-uçar 0000-0001-8011-5059

Yayımlanma Tarihi
Gönderilme Tarihi 17 Mayıs 2024
Kabul Tarihi 8 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 6

Kaynak Göster

APA Arserim-uçar, D. K. (t.y.). ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL. Gıda, 49(6), 1148-1161. https://doi.org/10.15237/gida.GD24055
AMA Arserim-uçar DK. ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL. GIDA. 49(6):1148-1161. doi:10.15237/gida.GD24055
Chicago Arserim-uçar, Dılhun Keriman. “ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL”. Gıda 49, sy. 6 t.y.: 1148-61. https://doi.org/10.15237/gida.GD24055.
EndNote Arserim-uçar DK ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL. Gıda 49 6 1148–1161.
IEEE D. K. Arserim-uçar, “ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL”, GIDA, c. 49, sy. 6, ss. 1148–1161, doi: 10.15237/gida.GD24055.
ISNAD Arserim-uçar, Dılhun Keriman. “ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL”. Gıda 49/6 (t.y.), 1148-1161. https://doi.org/10.15237/gida.GD24055.
JAMA Arserim-uçar DK. ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL. GIDA.;49:1148–1161.
MLA Arserim-uçar, Dılhun Keriman. “ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL”. Gıda, c. 49, sy. 6, ss. 1148-61, doi:10.15237/gida.GD24055.
Vancouver Arserim-uçar DK. ENGINEERED CHITOSAN NANOPARTICLES FOR ENCAPSULATION OF THYMOL. GIDA. 49(6):1148-61.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/