Araştırma Makalesi
BibTex RIS Kaynak Göster

Moleküler Docking Yöntemi ile Vitis vinifera L. İçeriğindeki Fitokimyasal Bileşiklerin İnsan Hemoglobin Proteini ile Etkileşiminin İncelenmesi

Yıl 2025, Cilt: 1 Sayı: 1, 9 - 21, 30.01.2025

Öz

Amaç: Hemoglobin, dokulara oksijen taşıyan kırmızı kan hücrelerinde bulunan proteindir, özellikle anemi
(kansızlık) teşhisinde dikkate alınan önemli bir belirteçtir. Vitis vinifera, içerdiği birçok fitokimyasal bileşikler
sayesinde, anemiye iyi geldiği belirtilen bir bitkidir. Bu çalışmada V. vinifera içeriğinde bulunan etken maddeler
ile hemoglobin proteini arasındaki etkileşimin moleküler docking yöntemi ile araştırılması amaçlanmıştır.
Yöntem: Bitki içeriğinde bulunan etken maddelerin hemoglobin proteinine bağlanma afinitelerini hesaplamak için
Maestro Schödinger paket programı kullanıldı. Ligandların moleküler yapısını bulmak için Pubchem veri tabanı
kullanıldı. Hemoglobine (PDB ID: 2D60) ait protein yapısı RCSB Protein Veri Bankasından elde edildi.
Bulgular: Bu çalışmada V. vinifera içeriğinde bulunan 16 etken madde ile hemoglobin proteini arasında etkileşim
olduğu belirlendi. Hemoglobin proteini ile en iyi bağlanma afinitesine sahip fitokimyasal bileşenler vitisin A
(-9.144 kcal/mol), proanthocyanidin (-7.791 kcal/mol) ve anthocyanin a2 (-7.356 kcal/mol) olarak belirlendi.
Sonuç: Bu çalışma ile insan hemoglobin proteini ile V. vinifera içeriğinde bulunan fitokimyasal bileşiklerin
moleküler docking bağlanma skoru ile, gerçekleştirdiği etkileşimler gösterilmiştir. Vitisin A, proanthocyanidin ve
anthocyanin a2’nin bağlanma enerjilerinin düşük olması bu bileşiklerin hemoglobin proteininin birer bağlayıcısı
olma potansiyelini göstermektedir.

Kaynakça

  • 1. World Health Organization Iron Deficiency Anemia Assessment, Prevention, and Control: A guide for programme managerers. Geneva:2001. WHO/NHD/01.03. http://whqlibdoc.who.int/hq/2001/WHO_NHD_ 01.3.pdf.
  • 2. World Health Organization.Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geeva: WHO;2011 (cited 2024 Dec 17). Available from: https://www.who.int/publications/i/item/WHONMH-NHD-MNM-11.1.
  • 3. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009;12(4):444-54. https://doi.org/10.1017/S1368980008002401.
  • 4. Gardner W, Kassebaum N. Global, regional, and national prevalence and causes of anemia in 204 countries and territories, 1990–2019. Curr Dev Nutr.2020. https://doi.org/10.1093/cdn/nzaa053_035.
  • 5. Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003; 24(4): 99-103. https://doi.org/10.1177/15648265030244S206
  • 6. James AH. Iron deficiency anemia in pregnancy. Obstet Gynecol. 2021; 138(4):663-74. https://doi.org/10.1097/AOG.000000000000455
  • 7. Rasmussen K. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr. 2001;131(2 Suppl 2):590S-603S. https://doi.org/10.1093/jn/131.2.590S.
  • 8. Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management. Blood. 2018;131(5):505-14. https://doi.org/10.1182/blood-2017-07-746446.
  • 9. Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018;70:13–42. doi: https://doi.org/10.1016/j.bcmd.2017.10.006.
  • 10. Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KV. Hemoglobin expression in nonerythroid cells: novel or ubiquitous? Int J Inflam. 2014; 2014:803237. https://doi.org/10.1155/2014/803237.
  • 11. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A resolution, obtained by X-ray analysis. Nature. 1960;185(4711):416-22. https://doi.org/10.1038/185416a0.
  • 12. Perutz MF. Structure and mechanism of haemoglobin. Br Med Bull. 1976;32(3):195-208. https://doi.org/10.1093/oxfordjournals.bmb.a071 363.
  • 13. Marengo-Rowe AJ. Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent).2006;19(3):239-45. https://doi.org/10.1080/08998280.2006.1192817
  • 14. Venkitasamy C, Zhao L, Zhang R, Pan Z. Grapes. In: Pan Z, Zhang R, Zicari S, editors. Integrated Processing Technologies for Food and Agricultural By-Products. Academic Press; 2019. p. 133–163. https://doi.org/10.1016/B978-0-12- 814138-0.00006-X.
  • 15. Filocamo A, Bisignano C, Mandalari G, Navarra M. In vitro antimicrobial activity and effect on biofilm production of a white grape juice (Vitis vinifera) extract. Evid Based Complement Alternat Med. 2015;2015:856243. https://doi.org/10.1155/2015/856243.
  • 16. Goufo P, Singh RK, Cortez I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants. 2020;9(5):398. https://doi.org/10.3390/antiox9050398.
  • 17. Arora P, Ansari SH, Najmi AK, Anjum V, Ahmad S. Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy Asthma Clin Immunol. 2016;12:42. https://doi.org/10.1186/s13223-016- 0145-x.
  • 18. Di Lorenzo C, Sangiovanni E, Fumagalli M, Colombo E, Frigerio G, Colombo F, et al. Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: A comparative study. Int J Mol Sci. 2016;17(7):1156. https://doi.org/10.3390/ijms17071156.
  • 19. Radulescu C, Buruleanu LC, Nicolescu CM, Olteanu RL, Bumbac M, Holban GC, et al. Phytochemical profiles, antioxidant and antibacterial activities of grape (Vitis vinifera L.) seeds and skin from organic and conventional vineyards. Plants. 2020;9(11):1470.. https://doi.org/10.3390/plants9111470.
  • 20. Esatbeyoglu T, Ewald P, Yasui Y, Yokokawa H, Wagner AE, Matsugo S, et al. Chemical characterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root extract of Vitis vinifera. Oxid Med Cell Longev. 2016; 2016:8591286. https://doi.org/10.1155/2016/8591286.
  • 21. Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Türkiye). J Ethnopharmacol. 2013;146(1):331- 346, https://doi.org/10.1016/j.jep.2012.12.054.
  • 22. Hayta S, Polat R, Selvi S. Traditional uses of medicinal plants in Elazığ (Türkiye). J Ethnopharmacol.2014;154(3):613623. https://doi.org/10.1016/j.jep.2014.04.026.
  • 23. Ishtiaq M, Mahmood A, Maqbool M. Indigenous knowledge of medicinal plants from Sudhanoti district (AJK), Pakistan. J Ethnopharmacol. 2015; 168:201-207. https://doi.org/10.1016/j.jep.2015.01.054.
  • 24. Sargin SA, Selvi S, López V. Ethnomedicinal plants of Sarıgöl district (Manisa), Türkiye. J Ethnopharmacol. 2015; 171:64-84., https://doi.org/10.1016/j.jep.2015.05.031.
  • 25. Egea T, Signorini MA, Bruschi P, Rivera D, Obón C, Alcaraz F, et al. Spirits and liqueurs in European traditional medicine: Their history and ethnobotany in Tuscany and Bologna (Italy). J Ethnopharmacol. 2015; 175:241-255. https://doi.org/10.1016/j.jep.2015.08.053.
  • 26. Muhamad I, Hana K, Hegar P, Irda F. Phytochemical compounds and pharmacological activities of Vitis vinifera L.: an updated review. Biointerface Research in Applied Chemistry. 2021;11(5):13829-13848. https://doi.org/10.33263/BRIAC115.1382913849
  • 27. Paggi JM, Pandit A, Dror RO. The art and science of molecular docking. Annu Rev Biochem. 2024; 93:389–410. https://doi.org/10.1146/annurevbiochem-030222-120000
  • 28. Erbay MS, Anıl S, Melikoğlu G. Plants used in traditional treatment against anemia in Turkey. Marmara Pharmaceutical Journal. 2016;20:164- 71. https://doi.org/10.12991/mpj.20162044391.
  • 29. Chaudhuri S, Chakraborty S, Sengupta PK. Probing the interactions of hemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modeling studies. Biophys Chem. 2011; 154(1):26–34. https://doi.org/10.1016/j.jlumin.2012.01.021
  • 30. Maestro. Schrödinger, LLC, New York, NY.
  • 31. Kayaalp S. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji 2. Cilt. 11. Baskı. Hacettepe-Taş Kitapçılık Ltd Şti, Ankara. 2005, pp.1335-1358.
  • 32. Zeng Z, Hu J, Jiang J, Xiao G, Yang R, Li S, Li Y, Huang H, Zhong H, Bi X. Network pharmacology and molecular docking-based prediction of the mechanism of Qianghuo Shengshi Decoction against rheumatoid arthritis. Biomed Res Int. 2021; 2021:1–12. https://doi.org/10.1155/2021/6623912
  • 33. Liu J, Liu J, Tong X, Peng W, Wei S, Sun T, Wang Y, Zhang B, Li W. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255– 3276. https://doi.org/10.2147/DDDT.S319786.
  • 34. Mazza G, Francis FJ. Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr. 1995; 35(4):341-371. https://doi.org/10.1080/10408399509527704
  • 35. Bitsch R, Netzel M, Frank T, Strass G, Bitsch I. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J Biomed Biotechnol.2004;293–298. https://doi.org/10.1155/S1110724304403106
  • 36. Koide T, Kamei H, Hashimoto Y, Kojima T, Hasegawa M. Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother Radiopharm. 1996; 11:273–277. https://doi.org/10.1089/cbr.1996.11.273
  • 37. Maletić E, Kontić JK, Preiner D, Jeromel A, Patz CD, Dietrich H. Anthocyanin profile and antioxidative capacity of some autochthonous Croatian red wines. J Food Agr Environ. 2009; 7:48–51.
  • 38. Garcia-Alonso M, Rimbach G, Sasai M, Nakahara M, Matsugo S, Uchida Y, RivasGonzalo JC, De Pascual-Teresa S. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins. Mol Nutr Food Res. 2005; 49:1112–1119. https://doi.org/10.1002/mnfr.200500100.
  • 39. De Pascual-Teresa S, Sanchez-Ballesta MT. Anthocyanins: from plant to health. Phytochem. Rev.2008;7: 281–299. https://doi.org/10.1007/s11101-007-9074-0.
  • 40. Romero C, Bakker J. Effect of acetaldehyde and several acids on the formation of vitisin A in model wine anthocyanin and colour evolution. Int. J. Food Sci. Technol. 2000; 35:129–140. https://doi.org/10.1046/j.1365- 2621.2000.00372.x.
  • 41. He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules. 2010 9;15(12):9057-9091. https://doi.org/10.3390/molecules15129057.
  • 42. D. Ravishankar, A.K. Rajora, F. Greco, H.M. Osborn. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 45 (2013), pp. 2821-2831. https://doi.org/10.1016/j.biocel.2013.10.004.
  • 43. I.Ky, A, Le Floch, L. Zeng, L. Pechamat, M. Jourdes, P.L. Teissedre. Tannins. B. Caballero, P.M. Finglas, F. Toldrá (Eds.), Encyclopedia of Food and Health, Academic Press, Oxford (2016), pp. 247-255.
  • 44. Rauf A, Imran M, Abu-Izneid T, Iahtisham-UlHaq, Patel S, Pan X, Naz S, Silva AS, Saeed F, Suleria HAR. Proanthocyanidins: A comprehensive review. Biomed Pharmacother. 2019;116:108999. https://doi.org/10.1016/j.biopha.2019.108999.
  • 45. Lule S, Xia W. Food phenolics: A review on bioactivity, health benefits, and bioavailability. Crit Rev Food Sci Nutr. 2005; 45:453–73.
  • 46. Chowdhury S, Bhuiya S, Haque L, Das S. Indepth investigation of the binding of flavonoid taxifolin with bovine hemoglobin at physiological pH: Spectroscopic and molecular docking studies. Spectrochim Acta A Mol Biomol Spectrosc. 2020;225:117513. https://doi.org/10.1016/j.saa.2019.117513.
  • 47. Wang YQ, Zhang HM, Zhang GC, Liu SX, Zhou QH, Fei ZH, Liu ZT. Studies of the interaction between paraquat and bovine hemoglobin, Int. J. Biol. Macromol. 2007; 41:243-50. https://doi.org/10.1016/j.ijbiomac.2007.02.011.
  • 48. Fiorani M, Accorsi A, Cantoni O. Human red blood cells as a natural flavonoid reservoir, Free Radic. Res. 2003; 37:1331-8. https://doi.org/10.1080/10715760310001615998

Investigation of the Interaction of Phytochemical Compounds in Vitis vinifera L. with Human Hemoglobin Protein by Molecular Docking Method

Yıl 2025, Cilt: 1 Sayı: 1, 9 - 21, 30.01.2025

Öz

Purpose: Hemoglobin is a protein found in red blood cells that carries oxygen to tissues and is an important
marker, especially in the diagnosis of anemia. Vitis vinifera is a plant that is reported to be beneficial for anemia
due to its rich content of phytochemical compounds. This study aimed to investigate the interactions between the
active compounds in Vitis vinifera and hemoglobin protein using the molecular docking method.
Methods: The Maestro Schrödinger software package was utilized to calculate the binding affinity of the plant's
active compounds to the hemoglobin protein. The molecular structures of the ligands were retrieved from the
PubChem database, while the hemoglobin protein structure (PDB ID: 2D60) was obtained from the RCSB Protein
Data Bank.
Results: In this study, the interactions between 16 active compounds of V. vinifera and hemoglobin protein were
analyzed. The phytochemical components with the highest binding affinities to hemoglobin protein were identified
as vitisin A (-9.144 kcal/mol), proanthocyanidin (-7.791 kcal/mol), and anthocyanin a2 (-7.356 kcal/mol).
Conclusion: This study demonstrated the interactions between human hemoglobin protein and phytochemical
compounds in Vitis vinifera using molecular docking binding scores. The low binding energies of Vitisin A,
proanthocyanidin, and anthocyanin a2 indicate the potential of these compounds to act as binders for the
hemoglobin protein.

Kaynakça

  • 1. World Health Organization Iron Deficiency Anemia Assessment, Prevention, and Control: A guide for programme managerers. Geneva:2001. WHO/NHD/01.03. http://whqlibdoc.who.int/hq/2001/WHO_NHD_ 01.3.pdf.
  • 2. World Health Organization.Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geeva: WHO;2011 (cited 2024 Dec 17). Available from: https://www.who.int/publications/i/item/WHONMH-NHD-MNM-11.1.
  • 3. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009;12(4):444-54. https://doi.org/10.1017/S1368980008002401.
  • 4. Gardner W, Kassebaum N. Global, regional, and national prevalence and causes of anemia in 204 countries and territories, 1990–2019. Curr Dev Nutr.2020. https://doi.org/10.1093/cdn/nzaa053_035.
  • 5. Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003; 24(4): 99-103. https://doi.org/10.1177/15648265030244S206
  • 6. James AH. Iron deficiency anemia in pregnancy. Obstet Gynecol. 2021; 138(4):663-74. https://doi.org/10.1097/AOG.000000000000455
  • 7. Rasmussen K. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr. 2001;131(2 Suppl 2):590S-603S. https://doi.org/10.1093/jn/131.2.590S.
  • 8. Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management. Blood. 2018;131(5):505-14. https://doi.org/10.1182/blood-2017-07-746446.
  • 9. Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018;70:13–42. doi: https://doi.org/10.1016/j.bcmd.2017.10.006.
  • 10. Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KV. Hemoglobin expression in nonerythroid cells: novel or ubiquitous? Int J Inflam. 2014; 2014:803237. https://doi.org/10.1155/2014/803237.
  • 11. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A resolution, obtained by X-ray analysis. Nature. 1960;185(4711):416-22. https://doi.org/10.1038/185416a0.
  • 12. Perutz MF. Structure and mechanism of haemoglobin. Br Med Bull. 1976;32(3):195-208. https://doi.org/10.1093/oxfordjournals.bmb.a071 363.
  • 13. Marengo-Rowe AJ. Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent).2006;19(3):239-45. https://doi.org/10.1080/08998280.2006.1192817
  • 14. Venkitasamy C, Zhao L, Zhang R, Pan Z. Grapes. In: Pan Z, Zhang R, Zicari S, editors. Integrated Processing Technologies for Food and Agricultural By-Products. Academic Press; 2019. p. 133–163. https://doi.org/10.1016/B978-0-12- 814138-0.00006-X.
  • 15. Filocamo A, Bisignano C, Mandalari G, Navarra M. In vitro antimicrobial activity and effect on biofilm production of a white grape juice (Vitis vinifera) extract. Evid Based Complement Alternat Med. 2015;2015:856243. https://doi.org/10.1155/2015/856243.
  • 16. Goufo P, Singh RK, Cortez I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants. 2020;9(5):398. https://doi.org/10.3390/antiox9050398.
  • 17. Arora P, Ansari SH, Najmi AK, Anjum V, Ahmad S. Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy Asthma Clin Immunol. 2016;12:42. https://doi.org/10.1186/s13223-016- 0145-x.
  • 18. Di Lorenzo C, Sangiovanni E, Fumagalli M, Colombo E, Frigerio G, Colombo F, et al. Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: A comparative study. Int J Mol Sci. 2016;17(7):1156. https://doi.org/10.3390/ijms17071156.
  • 19. Radulescu C, Buruleanu LC, Nicolescu CM, Olteanu RL, Bumbac M, Holban GC, et al. Phytochemical profiles, antioxidant and antibacterial activities of grape (Vitis vinifera L.) seeds and skin from organic and conventional vineyards. Plants. 2020;9(11):1470.. https://doi.org/10.3390/plants9111470.
  • 20. Esatbeyoglu T, Ewald P, Yasui Y, Yokokawa H, Wagner AE, Matsugo S, et al. Chemical characterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root extract of Vitis vinifera. Oxid Med Cell Longev. 2016; 2016:8591286. https://doi.org/10.1155/2016/8591286.
  • 21. Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Türkiye). J Ethnopharmacol. 2013;146(1):331- 346, https://doi.org/10.1016/j.jep.2012.12.054.
  • 22. Hayta S, Polat R, Selvi S. Traditional uses of medicinal plants in Elazığ (Türkiye). J Ethnopharmacol.2014;154(3):613623. https://doi.org/10.1016/j.jep.2014.04.026.
  • 23. Ishtiaq M, Mahmood A, Maqbool M. Indigenous knowledge of medicinal plants from Sudhanoti district (AJK), Pakistan. J Ethnopharmacol. 2015; 168:201-207. https://doi.org/10.1016/j.jep.2015.01.054.
  • 24. Sargin SA, Selvi S, López V. Ethnomedicinal plants of Sarıgöl district (Manisa), Türkiye. J Ethnopharmacol. 2015; 171:64-84., https://doi.org/10.1016/j.jep.2015.05.031.
  • 25. Egea T, Signorini MA, Bruschi P, Rivera D, Obón C, Alcaraz F, et al. Spirits and liqueurs in European traditional medicine: Their history and ethnobotany in Tuscany and Bologna (Italy). J Ethnopharmacol. 2015; 175:241-255. https://doi.org/10.1016/j.jep.2015.08.053.
  • 26. Muhamad I, Hana K, Hegar P, Irda F. Phytochemical compounds and pharmacological activities of Vitis vinifera L.: an updated review. Biointerface Research in Applied Chemistry. 2021;11(5):13829-13848. https://doi.org/10.33263/BRIAC115.1382913849
  • 27. Paggi JM, Pandit A, Dror RO. The art and science of molecular docking. Annu Rev Biochem. 2024; 93:389–410. https://doi.org/10.1146/annurevbiochem-030222-120000
  • 28. Erbay MS, Anıl S, Melikoğlu G. Plants used in traditional treatment against anemia in Turkey. Marmara Pharmaceutical Journal. 2016;20:164- 71. https://doi.org/10.12991/mpj.20162044391.
  • 29. Chaudhuri S, Chakraborty S, Sengupta PK. Probing the interactions of hemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modeling studies. Biophys Chem. 2011; 154(1):26–34. https://doi.org/10.1016/j.jlumin.2012.01.021
  • 30. Maestro. Schrödinger, LLC, New York, NY.
  • 31. Kayaalp S. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji 2. Cilt. 11. Baskı. Hacettepe-Taş Kitapçılık Ltd Şti, Ankara. 2005, pp.1335-1358.
  • 32. Zeng Z, Hu J, Jiang J, Xiao G, Yang R, Li S, Li Y, Huang H, Zhong H, Bi X. Network pharmacology and molecular docking-based prediction of the mechanism of Qianghuo Shengshi Decoction against rheumatoid arthritis. Biomed Res Int. 2021; 2021:1–12. https://doi.org/10.1155/2021/6623912
  • 33. Liu J, Liu J, Tong X, Peng W, Wei S, Sun T, Wang Y, Zhang B, Li W. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255– 3276. https://doi.org/10.2147/DDDT.S319786.
  • 34. Mazza G, Francis FJ. Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr. 1995; 35(4):341-371. https://doi.org/10.1080/10408399509527704
  • 35. Bitsch R, Netzel M, Frank T, Strass G, Bitsch I. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J Biomed Biotechnol.2004;293–298. https://doi.org/10.1155/S1110724304403106
  • 36. Koide T, Kamei H, Hashimoto Y, Kojima T, Hasegawa M. Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother Radiopharm. 1996; 11:273–277. https://doi.org/10.1089/cbr.1996.11.273
  • 37. Maletić E, Kontić JK, Preiner D, Jeromel A, Patz CD, Dietrich H. Anthocyanin profile and antioxidative capacity of some autochthonous Croatian red wines. J Food Agr Environ. 2009; 7:48–51.
  • 38. Garcia-Alonso M, Rimbach G, Sasai M, Nakahara M, Matsugo S, Uchida Y, RivasGonzalo JC, De Pascual-Teresa S. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins. Mol Nutr Food Res. 2005; 49:1112–1119. https://doi.org/10.1002/mnfr.200500100.
  • 39. De Pascual-Teresa S, Sanchez-Ballesta MT. Anthocyanins: from plant to health. Phytochem. Rev.2008;7: 281–299. https://doi.org/10.1007/s11101-007-9074-0.
  • 40. Romero C, Bakker J. Effect of acetaldehyde and several acids on the formation of vitisin A in model wine anthocyanin and colour evolution. Int. J. Food Sci. Technol. 2000; 35:129–140. https://doi.org/10.1046/j.1365- 2621.2000.00372.x.
  • 41. He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules. 2010 9;15(12):9057-9091. https://doi.org/10.3390/molecules15129057.
  • 42. D. Ravishankar, A.K. Rajora, F. Greco, H.M. Osborn. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 45 (2013), pp. 2821-2831. https://doi.org/10.1016/j.biocel.2013.10.004.
  • 43. I.Ky, A, Le Floch, L. Zeng, L. Pechamat, M. Jourdes, P.L. Teissedre. Tannins. B. Caballero, P.M. Finglas, F. Toldrá (Eds.), Encyclopedia of Food and Health, Academic Press, Oxford (2016), pp. 247-255.
  • 44. Rauf A, Imran M, Abu-Izneid T, Iahtisham-UlHaq, Patel S, Pan X, Naz S, Silva AS, Saeed F, Suleria HAR. Proanthocyanidins: A comprehensive review. Biomed Pharmacother. 2019;116:108999. https://doi.org/10.1016/j.biopha.2019.108999.
  • 45. Lule S, Xia W. Food phenolics: A review on bioactivity, health benefits, and bioavailability. Crit Rev Food Sci Nutr. 2005; 45:453–73.
  • 46. Chowdhury S, Bhuiya S, Haque L, Das S. Indepth investigation of the binding of flavonoid taxifolin with bovine hemoglobin at physiological pH: Spectroscopic and molecular docking studies. Spectrochim Acta A Mol Biomol Spectrosc. 2020;225:117513. https://doi.org/10.1016/j.saa.2019.117513.
  • 47. Wang YQ, Zhang HM, Zhang GC, Liu SX, Zhou QH, Fei ZH, Liu ZT. Studies of the interaction between paraquat and bovine hemoglobin, Int. J. Biol. Macromol. 2007; 41:243-50. https://doi.org/10.1016/j.ijbiomac.2007.02.011.
  • 48. Fiorani M, Accorsi A, Cantoni O. Human red blood cells as a natural flavonoid reservoir, Free Radic. Res. 2003; 37:1331-8. https://doi.org/10.1080/10715760310001615998
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Şeyda Kaya 0000-0001-8489-8687

Yayımlanma Tarihi 30 Ocak 2025
Gönderilme Tarihi 23 Aralık 2024
Kabul Tarihi 29 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

Vancouver Kaya Ş. Investigation of the Interaction of Phytochemical Compounds in Vitis vinifera L. with Human Hemoglobin Protein by Molecular Docking Method. SABİB. 2025;1(1):9-21.