Araştırma Makalesi
BibTex RIS Kaynak Göster

β1-Integrin–Wnt/β-Katenin Etkileşiminin Pan-Kanser Biyoinformatik Analizi ve Terapötik Potansiyeli

Yıl 2025, Cilt: 1 Sayı: 2, 41 - 47, 29.07.2025

Öz

Hücre adezyonunu düzenleyen sinyal mekanizmalarındaki bozuklukların kanser bağlamında anlaşılması, adezyon hedefli tedavilerin klinik uygulamalarda güvenli ve etkili bir şekilde kullanılabilmesi açısından büyük önem taşımaktadır. Hücre dışı matrikse bağlanan temel adezyon reseptörlerinden biri olan β1-integrin, proliferasyon, hücre döngüsü ilerlemesi, apoptoz ve hücre göçü gibi birçok hayati süreci kontrol etmektedir. β1-integrin sinyal ağı oldukça karmaşık olup, çok sayıda tümörojenik yolla kesişmektedir. Bu nedenle, artmış β1-integrin aktivitesinin pek çok kanser türünde hastalık progresyonu ve tedavi direnci ile ilişkili bulunması şaşırtıcı değildir.
Bu çalışmada, ICGC/TCGA (2020) veritabanına ait 2.565 tümör örneği üzerinden bir pan-kanser analizi gerçekleştirilmiş ve β1-integrin ile KEGG map05200’de tanımlanmış 106 kanser ilişkili genlerdeki genetik değişimler incelenmiştir. cBioPortal arayüzü kullanılarak OncoPrint, mutasyon, kopya sayı değişikliği (CNA), karşılıklı dışlayıcılık ve yolak zenginleştirme analizleri yürütülmüştür.
Veriler, β1-integrin ile ilişkili olarak en sık değişikliğe uğrayan yolun Wnt sinyal yolu olduğunu göstermiştir. Ayrıca karşılıklı dışlayıcılık analizleri sonucunda, β1-integrin ile Wnt, LRP5, LRP6 ve FZD gen çiftleri arasında anlamlı düzeyde birlikte görülme (co-occurrence) saptanmıştır (p < 0.001; iki yönlü Fisher exact testi). Bu bulgular, β1-integrin ile Wnt/β-katenin yolları arasında anlamlı bir ilişki olduğunu ortaya koymaktadır. β1-integrinde meydana gelen genetik değişimlerin Wnt/β-katenin aktivasyonunu tetikleyip tetiklemediği ve bu durumun sağkalım ile metastaz üzerindeki etkileri ilerleyen çalışmalarda detaylı olarak incelenecektir.

Kaynakça

  • 1. Mezu-Ndubuisi, O. J., & Maheshwari, A. (2021). The role of integrins in inflammation and angiogenesis. Pediatric research, 89(7), 1619-1626.
  • 2. Sun, L., Guo, S., Xie, Y., & Yao, Y. (2023). The characteristics and the multiple functions of integrin β1 in human cancers. Journal of translational medicine, 21(1), 787.
  • 3. Li, Y., Peng, S., Xu, J., Liu, W., & Luo, Q. (2025). Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ, 13, e19328.
  • 4. Pang, X., He, X., Qiu, Z., Zhang, H., Xie, R., Liu, Z., ... & Cui, Y. (2023). Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 8(1), 1.
  • 5. Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature Reviews Cancer, 18(9), 533-548.
  • 6. Cooper, J. and Giancotti, F. (2019). Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. cancer Cell, 35(3), 347-367.
  • 7. Pan, B., Guo, J., Liao, Q., & Zhao, Y. (2018). β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncology letters, 15(4), 5412-5416.
  • 8. Bhat, M., Pasini, E., Pastrello, C., Rahmati, S., Angeli, M., Kotlyar, M., … & Jurišica, I. (2021). Integrative analysis of layers of data in hepatocellular carcinoma reveals pathway dependencies. World Journal of Hepatology, 13(1), 94-108.
  • 9. Li, L., Dong, X., Peng, F., & Shen, L. (2018). Integrin β1 regulates the invasion and radioresistance of laryngeal cancer cells by targeting CD147. Cancer cell international, 18, 1-11.
  • 10. Kariya, Y., & Nishita, M. (2025). Integrins in Cancer Drug Resistance: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 26(7), 3143.
  • 11. Ahmed, K. M., Pandita, R. K., Singh, D. K., Hunt, C. R., & Pandita, T. K. (2018). β1-integrin impacts rad51 stability and dna double-strand break repair by homologous recombination. Molecular and Cellular Biology, 38(9).
  • 12. Underwood, T. (2020). Pan-cancer analysis of whole genomes. Nature, 578(7793), 82-93.
  • 13. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., ... & Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery, 2(5), 401-404.
  • 14. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., ... & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling, 6(269), pl1-pl1.
  • 15. Bahceci, I., Dogrusoz, U., La, K. C., Babur, Ö., Gao, J., & Schultz, N. (2017). PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data. Bioinformatics, 33(14), 2238-2240.
  • 16. Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., & Bader, G. D. (2016). Cytoscape. js: a graph theory library for visualisation and analysis. Bioinformatics, 32(2), 309-311.
  • 17. Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., ... & Yang, C. (2016). Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Scientific reports, 6(1), 20395.
  • 18. Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., ... & Yin, G. (2022). Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal transduction and targeted therapy, 7(1), 3.
  • 19. Piva, M. B. R., Jakubzig, B., & Bendas, G. Integrin Activation Contributes to Lower Cisplatin Sensitivity in MV3 Melanoma Cells by Inducing the Wnt Signalling Pathway. Cancers (Basel) 2017; 9.
  • 20. Olabi, S., Ucar, A., Brennan, K., & Streuli, C. H. (2018). Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Research, 20(1), 128.
  • 21. Hersey P, Sosman, J, O'Day S et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3,±dacarbazine in patients with stage IV metastatic melanoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 116(6), 1526-1534.
  • 22. Besse B, Tsao LC, Chao DT et al. (2013). Phase Ib safety and pharmacokinetic study of volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Annals of oncology, 24(1), 90-96.
  • 23. Stupp R, Hegi ME, CENTRIC Study Team et al. (2014). Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. The lancet oncology, 15(10), 1100-1108.

A Pan-Cancer Bioinformatic Analysis of β1-Integrin–Wnt/β-Catenin Crosstalk and Its Potential Therapeutic Relevance

Yıl 2025, Cilt: 1 Sayı: 2, 41 - 47, 29.07.2025

Öz

Understanding adhesion receptor signalling dysregulation in cancer settings is vital for the effective and safe incorporation of adhesion-targeted therapeutics in the clinic. β1-integrin is a major extracellular matrix adhesion receptor that has been shown to control important processes such as proliferation, cell cycle progression, apoptosis and cell migration. β1-integrin signalling pathway is complex and can crosstalk with many tumorigenic pathways. It is therefore not surprising that enhanced β1-integrin signalling has been reported to correlate with progression and therapy resistance in many types of cancers. Therefore, a complete understanding of the pathways and genes altered in all cancer types is essential to identify novel therapeutic options specific for certain cancer types. In this study, a pan-cancer analysis was performed to identify alterations of β1-integrin and most dysregulated cancer-related genes (106 genes, Kegg map05200) using 2565 patients whole genomes data (ICGC/TCGA, 2020). OncoPrint, mutations, copy number alterations (CNA), mutual exclusivity and pathway enrichment were conducted using cBioPortal. PathwayMapper, an interactive graphical editing tool allowing collaborative curation was used to view altered genes and pathways with alteration frequencies. Pathway enrichment analyses related to genetic alterations identified the Wnt signaling was the most frequently altered pathway. Mutual exclusivity analyses showed that β1-integrin-Wnt; β1-integrin-LRP5/LRP6 and β1-integrin-FZD pairs exhibited co-occurrence, two sided fisher exact test indicates p < 0.001. This has shown a link between β1-integrin and Wnt/β-catenin pathways. Genetic alterations of β1-integrin receptor, whether these mutations will cause an activation of the Wnt/β-catenin pathway and their effects on overall survival and metastasis will be further examined.

Kaynakça

  • 1. Mezu-Ndubuisi, O. J., & Maheshwari, A. (2021). The role of integrins in inflammation and angiogenesis. Pediatric research, 89(7), 1619-1626.
  • 2. Sun, L., Guo, S., Xie, Y., & Yao, Y. (2023). The characteristics and the multiple functions of integrin β1 in human cancers. Journal of translational medicine, 21(1), 787.
  • 3. Li, Y., Peng, S., Xu, J., Liu, W., & Luo, Q. (2025). Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ, 13, e19328.
  • 4. Pang, X., He, X., Qiu, Z., Zhang, H., Xie, R., Liu, Z., ... & Cui, Y. (2023). Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 8(1), 1.
  • 5. Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature Reviews Cancer, 18(9), 533-548.
  • 6. Cooper, J. and Giancotti, F. (2019). Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. cancer Cell, 35(3), 347-367.
  • 7. Pan, B., Guo, J., Liao, Q., & Zhao, Y. (2018). β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncology letters, 15(4), 5412-5416.
  • 8. Bhat, M., Pasini, E., Pastrello, C., Rahmati, S., Angeli, M., Kotlyar, M., … & Jurišica, I. (2021). Integrative analysis of layers of data in hepatocellular carcinoma reveals pathway dependencies. World Journal of Hepatology, 13(1), 94-108.
  • 9. Li, L., Dong, X., Peng, F., & Shen, L. (2018). Integrin β1 regulates the invasion and radioresistance of laryngeal cancer cells by targeting CD147. Cancer cell international, 18, 1-11.
  • 10. Kariya, Y., & Nishita, M. (2025). Integrins in Cancer Drug Resistance: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 26(7), 3143.
  • 11. Ahmed, K. M., Pandita, R. K., Singh, D. K., Hunt, C. R., & Pandita, T. K. (2018). β1-integrin impacts rad51 stability and dna double-strand break repair by homologous recombination. Molecular and Cellular Biology, 38(9).
  • 12. Underwood, T. (2020). Pan-cancer analysis of whole genomes. Nature, 578(7793), 82-93.
  • 13. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., ... & Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery, 2(5), 401-404.
  • 14. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., ... & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling, 6(269), pl1-pl1.
  • 15. Bahceci, I., Dogrusoz, U., La, K. C., Babur, Ö., Gao, J., & Schultz, N. (2017). PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data. Bioinformatics, 33(14), 2238-2240.
  • 16. Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., & Bader, G. D. (2016). Cytoscape. js: a graph theory library for visualisation and analysis. Bioinformatics, 32(2), 309-311.
  • 17. Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., ... & Yang, C. (2016). Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Scientific reports, 6(1), 20395.
  • 18. Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., ... & Yin, G. (2022). Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal transduction and targeted therapy, 7(1), 3.
  • 19. Piva, M. B. R., Jakubzig, B., & Bendas, G. Integrin Activation Contributes to Lower Cisplatin Sensitivity in MV3 Melanoma Cells by Inducing the Wnt Signalling Pathway. Cancers (Basel) 2017; 9.
  • 20. Olabi, S., Ucar, A., Brennan, K., & Streuli, C. H. (2018). Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Research, 20(1), 128.
  • 21. Hersey P, Sosman, J, O'Day S et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3,±dacarbazine in patients with stage IV metastatic melanoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 116(6), 1526-1534.
  • 22. Besse B, Tsao LC, Chao DT et al. (2013). Phase Ib safety and pharmacokinetic study of volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Annals of oncology, 24(1), 90-96.
  • 23. Stupp R, Hegi ME, CENTRIC Study Team et al. (2014). Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. The lancet oncology, 15(10), 1100-1108.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoinformatik Yöntem Geliştirme
Bölüm Araştırma Makaleleri
Yazarlar

Seçil Eroğlu 0000-0002-1536-1736

Safiah Olabi 0000-0002-2850-0475

Oznur Bayraktar Ekmekcigil 0000-0002-4824-9943

Yayımlanma Tarihi 29 Temmuz 2025
Gönderilme Tarihi 14 Temmuz 2025
Kabul Tarihi 27 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

Vancouver Eroğlu S, Olabi S, Bayraktar Ekmekcigil O. A Pan-Cancer Bioinformatic Analysis of β1-Integrin–Wnt/β-Catenin Crosstalk and Its Potential Therapeutic Relevance. SABİB. 2025;1(2):41-7.