Research Article
BibTex RIS Cite

Optimization of Tensile Properties in 3D-Printed PETG Honeycomb Structures via Taguchi Method: Influence of Cell Size and Geometric Orientation

Year 2025, Volume: 11 Issue: 1, 167 - 178, 30.04.2025

Abstract

Honeycomb structures are extensively used in engineering applications due to their high strength-to-weight ratio, energy absorption capacity, and customizable mechanical behavior. However, optimizing their tensile performance remains a significant challenge. This study systematically investigates the effects of cell size (1.75 mm, 1.5 mm, 1.25 mm) and geometric orientation (0º, 15º, 30º) on the tensile behavior of 3D-printed polyethylene terephthalate glycol-modified (PETG) honeycomb structures, fabricated using Fused Deposition Modeling (FDM). Nine different specimens were manufactured and tested following the ASTM D638 standard. The optimal configuration was determined using Taguchi’s signal-to-noise (S/N) ratio analysis, while Analysis of Variance (ANOVA) was conducted for statistical evaluation. The results indicate that a cell size of 1.25 mm and a 30º orientation provided the highest fracture force (277.03 N), while the 1.75 mm cell size at 30º exhibited the greatest energy absorption (335.59 × 10⁻³ J). ANOVA confirmed that cell size significantly influenced tensile strength, whereas geometric orientation had a greater impact on energy absorption. This study contributes to optimizing 3D printing parameters for enhanced mechanical performance and provides insights for designing lightweight, high-strength structures in aerospace and structural applications. Future research may include computational simulations to further validate these findings.

References

  • [1] X. Zhou, L. Ren, Z. Song, and others, “Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications,” Composites Part B, vol. 254, p. 110585, 2023. doi: 10.1016/j.compositesb.2023.110585
  • [2] J. Fan et al., “A review of additive manufacturing of metamaterials and developing trends,” Materials Today, vol. 50, pp. 303–328, 2021. doi: 10.1016/j.mattod.2021.04.019
  • [3] Y. Garbatov, S. S. Marchese, G. Epasto, and V. Crupi, “Flexural response of additive-manufactured honeycomb sandwiches for marine structural applications,” Ocean Engineering, vol. 302, p. 117732, 2024. doi: 10.1016/j.oceaneng.2024.117732
  • [4] J. Zhang, G. Lu, and Z. You, “Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review,” Compos B Eng, vol. 201, p. 108340, 2020. doi: 10.1016/j.compositesb.2020.108340
  • [5] C. Qi, F. Jiang, and S. Yang, “Advanced honeycomb designs for mechanical properties: A review,” Composites Part B, vol. 227, p. 109393, 2021. https://doi.org/10.1016/j.compositesb.2021.109393. doi: 10.1016/j.compositesb.2021.109393
  • [6] G. Palomba, G. Epasto, L. Sutherland, and V. Crupi, “Aluminium honeycomb sandwich as a design alternative for lightweight marine structures,” Ships and Offshore Structures, vol. 17, pp. 2355–2366, 2022. doi: 10.1080/17445302.2021.1996109
  • [7] S. L. Omairey, P. D. Dunning, and S. Sriramula, “Development of an ABAQUS plugin tool for periodic RVE homogenisation,” Eng Comput (Swansea), vol. 35, pp. 567–577, 2019. doi: 10.1007/s00366-018-0616-4
  • [8] F. Pehlivan, F. H. Öztürk, S. Demir, and A. Temiz, “Optimization of functionally graded solid-network TPMS meta-biomaterials,” J Mech Behav Biomed Mater, vol. 157, p. 106609, 2024. doi: 10.1016/j.jmbbm.2024.106609
  • [9] G. Sun, X. Huo, H. Wang, and others, “On the structural parameters of honeycomb-core sandwich panels against low-velocity impact,” Composites Part B, vol. 216, p. 108881, 2021. doi: 10.1016/j.compositesb.2021.108881
  • [10] Z. Huang, X. Zhang, and C. Yang, “Experimental and numerical studies on the bending collapse of multi-cell Aluminum/CFRP hybrid tubes,” Composites Part B, vol. 181, p. 107527, 2020. doi: 10.1016/j.compositesb.2019.107527
  • [11] A. Singh, B. Koohbor, and G. Youssef, “Full-field characterizations of additively manufactured composite cellular structures,” Composites Part B, vol. 272, p. 111208, 2024. doi: 10.1016/j.compositesb.2024.111208
  • [12] X. Zheng, T. Chen, X. Jiang, and others, “Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices,” Sci Technol Adv Mater, vol. 24, p. 2157682, 2023. doi: 10.1080/14686996.2022.2157682
  • [13] P. Nampally, A. T. Karttunen, and J. N. Reddy, “Nonlinear finite element analysis of lattice core sandwich plates,” Int J NonLinear Mech, vol. 121, p. 103423, 2020. doi: 10.1016/j.ijnonlinmec.2020.103423
  • [14] H. Yang, Z. Liu, Y. Xia, and others, “Mechanical properties of hierarchical lattice via strain gradient homogenization approach,” Composites Part B, vol. 271, p. 111153, 2024. doi: 10.1016/j.compositesb.2023.111153
  • [15] L. Mizzi, D. Attard, R. Gatt, and others, “Implementation of periodic boundary conditions for loading of mechanical metamaterials using finite element analysis,” Eng Comput (Swansea), vol. 37, pp. 1765–1779, 2021. doi: 10.1007/s00366-019-00910-1
  • [16] Z. Zhao, C. Liu, X. Xu, L. Sun, J. Wang, Y.Li, “An FFT-based method for estimating the in-plane elastic properties of honeycomb considering geometric imperfections at large elastic deformation,” Thin-Walled Structures, vol. 185, p. 110570, 2023. doi: 10.1016/j.tws.2023.110570
  • [17] A. F. Yilmaz and M. Konal, “Enhanced Container Ship Hatch Cover using Topology Optimization Method for Lightweight Design and Optimal Costs,” Journal of Offshore Mechanics and Arctic Engineering, pp. 1–16, 2025. doi: 10.1115/1.4067799
  • [18] T. Wu, M. Li, X. Zhu, and X. Lu, “Research on non-pneumatic tires with gradient anti-tetrachiral structures,” Mechanics of Advanced Materials and Structures, vol. 28, pp. 2351–2359, 2021. doi: 10.1080/15376494.2020.1734888
  • [19] S. Liu, F. Zhang, B. Chao, and others, “Based on the preparation of dual-absorber agents using Ni and Ni/rGO for the fabrication of a dual honeycomb nested structure for wideband microwave absorption,” Composites Part B, vol. 284, p. 111735, 2024. doi: 10.1016/j.compositesb.2024.111735
  • [20] X. Zhang, L. Zhang, and P. Zhang, “Equivalent constitutive equations of honeycomb material using micro-polar theory to model thermo-mechanical interaction,” Composites Part B, vol. 43, pp. 3081–3087, 2012. doi: 10.1016/j.compositesb.2012.04.056
  • [21] Y. Le, N. S. Ha, and N. S. Goo, “Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review,” Composites Part B, vol. 226, p. 109301, 2021. doi: 10.1016/j.compositesb.2021.109301
  • [22] C. Peng and P. Tran, “Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings,” Composites Part B, vol. 188, p. 107773, 2020. doi: 10.1016/j.compositesb.2020.107773
  • [23] X. Xing, S. Yang, S. Lu, and others, “Energy absorption and optimization of bi-directional corrugated honeycomb aluminum,” Composites Part B, vol. 219, p. 108914, 2021. doi: 10.1016/j.compositesb.2021.108914
  • [24] F. Pehlivan, “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation,” Manufacturing Technologies and Applications, vol. 5, no. 3, pp. 284–294, 2024. doi: 10.52795/mateca.1576416
  • [25] S. Demir, A. Temiz, and F. Pehlivan, “The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi,” Polym Eng Sci, vol. 64, no. 3, pp. 1209–1221, 2024. doi: 10.1002/pen.26608
  • [26] N. Ben Ali, M. Khlif, D. Hammami, and C. Bradai, “Experimental optimization of process parameters on mechanical properties and the layers adhesion of 3D printed parts,” J Appl Polym Sci, vol. 139, no. 9, p. 51706, 2022. doi: 10.1002/app.51706
  • [27] F. H. Öztürk, “Optimization of adherend thickness and overlap length on failure load of bonded 3D printed PETG parts using response surface method,” Rapid Prototyp J, vol. 30, no. 8, pp. 1579–1591, 2024. doi: 10.1108/RPJ-02-2024-0090
  • [28] A. F. Yilmaz, “Assessment of Combinability of S235JR-S460MC Structural Steels on Fatigue Performance,” Transactions of the Indian Institute of Metals, vol. 77, no. 2, pp. 323–331, Feb. 2024. doi: 10.1007/s12666-023-03113-x
  • [29] P. Wang, Y. Bian, F. Yang, H. Fan, and B. Zheng, “Mechanical properties and energy absorption of FCC lattice structures with different orientation angles,” Acta Mech, vol. 231, pp. 3129–3144, 2020. doi: 10.1007/s00707-020-02710-x
  • [30] A. Temiz, “The Effects of Process Parameters on Tensile Characteristics and Printing Time for Masked Stereolithography Components, Analyzed Using the Response Surface Method,” J. of Materi Eng and Perform., vol. 33, pp. 9356–9365, 2024. doi: 10.1007/s11665-023-08617-7
  • [31] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, and R. Kaçar, “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu,” Politeknik Dergisi, vol. 23, no. 1, pp. 73–79, Mar. 2020. doi: 10.2339/politeknik.422795
  • [32] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, and D. Fang, “Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies,” Int J Mech Sci, vol. 159, pp. 43–57, 2019. doi: 10.1016/j.ijmecsci.2019.05.044
There are 32 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Research Articles
Authors

Ahmet Fatih Yılmaz 0000-0001-5784-0121

Publication Date April 30, 2025
Submission Date March 4, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

IEEE A. F. Yılmaz, “Optimization of Tensile Properties in 3D-Printed PETG Honeycomb Structures via Taguchi Method: Influence of Cell Size and Geometric Orientation”, GJES, vol. 11, no. 1, pp. 167–178, 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg