Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 120 - 128, 31.08.2022
https://doi.org/10.55507/gopzfd.1088185

Öz

Destekleyen Kurum

yok

Kaynakça

  • Al-Obeed, R., Kassem, H., & Ahmed, M. (2011). Leaf petiole mineral and fruit heavy metals content of different grape cultivars grown under arid environments and irrigated with treated domestic wastewater. Advances in Agriculture & Botanics, 3(1), 5-14.
  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.
  • Angelova, V. R., Ivanov, A. S., & Braikov, D. M. (1999). Heavy metals (Pb, Cu, Zn and Cd) in the system soil–grapevine–grape. Journal of the Science of Food and Agriculture, 79(5), 713-721.
  • Anjum, N. A., Umar, S., Ahmad, A., & Iqbal, M. (2008). Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Communications in soil science and plant analysis, 39(15-16), 2469-2483.
  • Anwar, S., Khan, S., Ashraf, M. Y., Noman, A., Zafar, S., Liu, L., Ullah, S., & Fahad, S. (2017). Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. International journal of phytoremediation, 19(6), 505-513.
  • Bavaresco, L., Giachino, E., & Pezzutto, S. (2003). Grapevine rootstock effects on lime‐induced chlorosis, nutrient uptake, and source–sink relationships. Journal of plant nutrition, 26(7), 1451-1465.
  • Borchard, N., Siemens, J., Ladd, B., Möller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184-194.
  • Borges, K. L. R., Hippler, F. W. R., Carvalho, M. E. A., Nalin, R. S., Matias, F. I., & Azevedo, R. A. (2019). Nutritional status and root morphology of tomato under Cd-induced stress: comparing contrasting genotypes for metal-tolerance. Scientia Horticulturae, 246, 518-527. Bremner, J. (1965). Total nitrogen. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1149-1178.
  • Cakmak, I., & Marschner, H. (1988). Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant physiology, 132(3), 356-361.
  • Cakmak, I., Welch, R., Erenoglu, B., Römheld, V., Norvell, W., & Kochian, L. (2000). Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 219(1), 279-284.
  • Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M. H., & Masclaux-Daubresse, C. (2004). Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and cell physiology, 45(11), 1681-1693.
  • Cheng, K., Tian, H., Zhao, D., Lu, L., Wang, Y., Chen, J., Liu, X., Jia, W., & Huang, Z. (2014). Atmospheric emission inventory of cadmium from anthropogenic sources. International Journal of Environmental Science and Technology, 11(3), 605-616.
  • Chun, C.-P., Zhou, W., Ling, L.-L., Cao, L., Fu, X.-Z., Peng, L.-Z., & Li, Z.-G. (2020). Uptake of cadmium (Cd) by selected citrus rootstock cultivars. Scientia Horticulturae, 263, 109061.
  • El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M., Sebastian, A., Prasad, M., & Rinklebe, J. (2021). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 1-52.
  • Erdem, H. (2021). The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi Journal of Biological Sciences, 28(7), 3965-3971.
  • Erdem, H., Kinay, A., Günal, E., Yaban, H., & Tutuş, Y. (2017). The effects of biochar application on cadmium uptake of tobacco. Carpathian Journal of Earth and Environmental Sciences, 12(2).
  • Erdem, H., Kınay, A., Ozturk, M., & Tutus, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars. Journal of Food, Agriculture & Environment, 10(1), 965-969.
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782.
  • Gouia, H., Ghorbal, M. H., & Meyer, C. (2000). Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, 38(7-8), 629-638.
  • Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., Dantu, P. K., & Mishra, S. (2020). Effect of heavy metals on plant growth: an overview. Contaminants in agriculture, 79-101.
  • Grant, C. A., Buckley, W. T., Bailey, L. D., & Selles, F. (1998). Cadmium accumulation in crops. Canadian Journal of Plant Science, 78(1), 1-17. https://doi.org/10.4141/p96-100
  • Greger, M., & Löfstedt, M. (2004). Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 44(2), 501-507. Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112.
  • Hart, J. J., Welch, R. M., Norvell, W. A., Sullivan, L. A., & Kochian, L. V. (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiology, 116(4), 1413-1420.
  • He, J., Zhou, J., Wan, H., Zhuang, X., Li, H., Qin, S., & Lyu, D. (2020). Rootstock–scion interaction affects cadmium accumulation and tolerance of malus. Frontiers in Plant Science, 11, 1264.
  • Hussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188.
  • Hussain, T., Murtaza, G., Ghafoor, A., & Cheema, M. A. (2016). The Cd: Zn ratio in a soil affects Cd toxicity in spinach (Spinacea oleracea L.). Pak. J. Agri. Sci, 53(2), 419-424. Ibacache, A. G., & Sierra, C. B. (2009). Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chilean Journal of Agricultural Research, 69(4), 503-508.
  • Kacar, B., & İnal, A. (2008). Bitki analizleri (Vol. No: 1241). Nobel Yayın.
  • Kaya, C., Okant, M., Ugurlar, F., Alyemeni, M. N., Ashraf, M., & Ahmad, P. (2019). Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225, 627-638.
  • Khurana, M., & Jhanji, S. (2014). Influence of cadmium on dry matter yield, micronutrient content and its uptake in some crops. Journal of Environmental biology, 35(5), 865.
  • Kim, S., Chang, A., Page, A., & Warneke, J.(1988). Relative concentrations of cadmium and zinc in tissue of selected food plants grown on sludge‐treated soils (0047-2425).
  • Kinay, A., Erdem, H., & Karakoç, E. (2021). Chemical Composition of Tobacco Genotypes in Response to Zinc Application Under Cadmium Toxicity. Romanian Agricultural Research, 38, 301-310.
  • Lecourt, J., Lauvergeat, V., Ollat, N., Vivin, P., & Cookson, S. J. (2015). Shoot and root ionome responses to nitrate supply in grafted grapevines are rootstock genotype dependent. Australian Journal of Grape and Wine Research, 21(2), 311-318.
  • Lin, Y.-F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69(19), 3187-3206.
  • Loi, N., Sanzharova, N., Shchagina, N., & Mironova, M. (2018). The effect of cadmium toxicity on the development of lettuce plants on contaminated sod-podzolic soil. Russian Agricultural Sciences, 44(1), 49-52.
  • Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M., & Wagner, G. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Advances in agronomy, 83(1), 111-118.
  • Luo, Z.-B., He, J., Polle, A., & Rennenberg, H. (2016). Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 34(6), 1131-1148.
  • Miklós, E., & Erdei, L. (1997). Effect of cadmium on growth and ion transport of grapevine. V International Symposium on Grapevine Physiology 526
  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological research, 48(1), 1-7.
  • Nascimento, V., Nogueira, G., Monteiro, G., Júnior, W., de Freitas, J. M. N., & Neto, C. (2021). Influence of Heavy Metals on the Nitrogen Metabolism in Plants. In Nitrogen in Agriculture-Physiological, Agricultural and Ecological Aspects. IntechOpen.
  • Obata, H., & Umebayashi, M. (1993). Production of SH compounds in higher plants of different tolerance to Cd. Plant and Soil, 155(1), 533-536.
  • Pereira, B. F. F., Rozane, D. E., Araújo, S. R., Barth, G., Queiroz, R. J. B., Nogueira, T. A. R., Moraes, M. F., Cabral, C. P., Boaretto, A. E., & Malavolta, E. (2011). Cadmium availability and accumulation by lettuce and rice. Revista Brasileira de Ciência do Solo, 35, 645-654.
  • Rasool, M., Anwar-ul-Haq, M., Jan, M., Akhtar, J., Ibrahim, M., & Iqbal, J. (2020). 27. Phytoremedial potential of maize (Zea mays L.) hybrids against cadmium (Cd) and lead (Pb) toxicity. Pure and Applied Biology (PAB), 9(3), 1932-1945.
  • Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C., Zia-ur-Rehman, M., Zahir, Z. A., Rinklebe, J., Tack, F. M., & Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90-105.
  • Rizwan, M., Ali, S., ur Rehman, M. Z., Rinklebe, J., Tsang, D. C., Bashir, A., Maqbool, A., Tack, F., & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: a review. Science of the Total Environment, 631, 1175-1191.
  • Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant physiology, 109(4), 1427-1433. Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161.
  • Sgherri, C., Milone, M. T. A., Clijsters, H., & Navari-Izzo, F. (2001). Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. Journal of plant physiology, 158(11), 1439-1447.
  • Sgherri, C., Quartacci, M. F., Izzo, R., & Navari-Izzo, F. (2002). Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiology and Biochemistry, 40(6-8), 591-597.
  • Shrivastava, M., Khandelwal, A., & Srivastava, S. (2019). Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals. In Plant-metal interactions (pp. 79-97). Springer.
  • Song, X., Yue, X., Chen, W., Jiang, H., Han, Y., & Li, X. (2019). Detection of cadmium risk to the photosynthetic performance of Hybrid Pennisetum. Frontiers in plant science, 10, 798.
  • Stachowiak, A., Bosiacki, M., Świerczyński, S., & Kolasiński, M. (2015). Influence of rootstocks on different sweet cherry cultivars and accumulation of heavy metals in leaves and fruit. Horticultural Science, 42(4), 193-202.
  • Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7.
  • Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A., Nicoloso, F. T., Soriani, H. H., De Conti, L., Kulmann, M. S., Schneider, R. O., & Brunetto, G. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222, 203-212.
  • Wang, W. (1987). Root elongation method for toxicity testing of organic and inorganic pollutants. Environmental Toxicology and Chemistry: An International Journal, 6(5), 409-414.
  • Wu, F., Wu, H., Zhang, G., & Bachir, D. M. (2004). Differences in growth and yield in response to cadmium toxicity in cotton genotypes. Journal of Plant Nutrition and Soil Science, 167(1), 85-90.
  • Wu, F., Zhang, G., & Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental botany, 50(1), 67-78.
  • Xiao, Y., Li, Y., Shi, Y., Li, Z., Zhang, X., Liu, T., Farooq, T. H., Pan, Y., Chen, X., & Yan, W. (2022). Combined toxicity of zinc oxide nanoparticles and cadmium inducing root damage in Phytolacca americana L. Science of The Total Environment, 806, 151211.
  • Yang, J., Bao, H., Wan, J., Ding, Y., Wang, F., & Zhu, C. (2021). Screening of tomato cultivars in cadmium-polluted areas and study on their antioxidant capacity. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 37(1), 242-252.
  • Yuan, H., Sun, L., Tai, P., Liu, W., Li, X., & Hao, L. (2019). Effects of grafting on root-to-shoot cadmium translocation in plants of eggplant (Solanum melongena) and tomato (Solanum lycopersicum). Science of The Total Environment, 652, 989-995.
  • Zamboni, M., Garavani, A., Gatti, M., Vercesi, A., Parisi, M. G., Bavaresco, L., & Poni, S. (2016). Vegetative, physiological and nutritional behavior of new grapevine rootstocks in response to different nitrogen supply. Scientia Horticulturae, 202, 99-106.
  • Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C., & Lin, Y. (2022). Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells, 11(3), 569.
  • Zhi, Y., Sun, T., Zhou, Q., & Leng, X. (2020). Screening of safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 10(1), 1-12.
  • Zhou, J., Wan, H., He, J., Lyu, D., & Li, H. (2017). Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Frontiers in plant science, 8, 966.
  • Zhou, J., Zhang, C., Du, B., Cui, H., Fan, X., Zhou, D., & Zhou, J. (2020). Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environmental Pollution, 265, 115045.
  • Zhou, Z., Zhang, B., Liu, H., Liang, X., Ma, W., Shi, Z., & Yang, S. (2019). Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. Ecotoxicology and Environmental Safety, 183, 109562.
  • Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M., Ahmad, M., Ali, N., & Maqsood, M. F. (2021). Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies. Journal of Soil Science and Plant Nutrition, 1-58.

Determination of Grapevine Rootstocks Resistancy to Cadmium (Cd) Toxicity

Yıl 2022, , 120 - 128, 31.08.2022
https://doi.org/10.55507/gopzfd.1088185

Öz

In this study, response of 12 grapevine rootstock genotypes to cadmium (Cd) toxicity were investigated. The Cd application to the soil was made at the beginning of the experiment at 4 different (0, 5, 10 ve 20 mg Cd kg-1) doses. Shoot, leaf and root dry matter yields, leaf Cd, N, P and Zn contents were determined to assess genotype tolerance of Cd toxicity. Present findings revealed that based on shoot, leaf and root dry weights, leaf Cd, N, P and Zn contents, there were Cd-sensitive and resistant genotypes among the present ones. At the greatest Cd dose (Cd20), the greatest Cd contents (µg plant-1) were observed in 8B (6.13), 420A (5.35) and 1103P (4.69) rootstocks and the lowest Cd contents were observed in 99R (1.27) and SO4 (1.58) rootstocks. Among the grapevine rootstocks, SO4 with quite lower leaf Cd accumulation than the other genotypes and increasing shoot and leaf dry weights and leaf N, P and Zn content was identified as resistant against toxic Cd conditions. On the other hand, 8B, 420A, 1103P, 5BB, Harmony genotypes with decreasing shoot, leaf and root dry weights under Cd toxicity conditions, higher leaf Cd accumulations and significantly decreasing leaf N, P and Zn contents were considered as sensitive to Cd toxicity.

Kaynakça

  • Al-Obeed, R., Kassem, H., & Ahmed, M. (2011). Leaf petiole mineral and fruit heavy metals content of different grape cultivars grown under arid environments and irrigated with treated domestic wastewater. Advances in Agriculture & Botanics, 3(1), 5-14.
  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.
  • Angelova, V. R., Ivanov, A. S., & Braikov, D. M. (1999). Heavy metals (Pb, Cu, Zn and Cd) in the system soil–grapevine–grape. Journal of the Science of Food and Agriculture, 79(5), 713-721.
  • Anjum, N. A., Umar, S., Ahmad, A., & Iqbal, M. (2008). Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Communications in soil science and plant analysis, 39(15-16), 2469-2483.
  • Anwar, S., Khan, S., Ashraf, M. Y., Noman, A., Zafar, S., Liu, L., Ullah, S., & Fahad, S. (2017). Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. International journal of phytoremediation, 19(6), 505-513.
  • Bavaresco, L., Giachino, E., & Pezzutto, S. (2003). Grapevine rootstock effects on lime‐induced chlorosis, nutrient uptake, and source–sink relationships. Journal of plant nutrition, 26(7), 1451-1465.
  • Borchard, N., Siemens, J., Ladd, B., Möller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184-194.
  • Borges, K. L. R., Hippler, F. W. R., Carvalho, M. E. A., Nalin, R. S., Matias, F. I., & Azevedo, R. A. (2019). Nutritional status and root morphology of tomato under Cd-induced stress: comparing contrasting genotypes for metal-tolerance. Scientia Horticulturae, 246, 518-527. Bremner, J. (1965). Total nitrogen. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1149-1178.
  • Cakmak, I., & Marschner, H. (1988). Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant physiology, 132(3), 356-361.
  • Cakmak, I., Welch, R., Erenoglu, B., Römheld, V., Norvell, W., & Kochian, L. (2000). Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 219(1), 279-284.
  • Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M. H., & Masclaux-Daubresse, C. (2004). Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and cell physiology, 45(11), 1681-1693.
  • Cheng, K., Tian, H., Zhao, D., Lu, L., Wang, Y., Chen, J., Liu, X., Jia, W., & Huang, Z. (2014). Atmospheric emission inventory of cadmium from anthropogenic sources. International Journal of Environmental Science and Technology, 11(3), 605-616.
  • Chun, C.-P., Zhou, W., Ling, L.-L., Cao, L., Fu, X.-Z., Peng, L.-Z., & Li, Z.-G. (2020). Uptake of cadmium (Cd) by selected citrus rootstock cultivars. Scientia Horticulturae, 263, 109061.
  • El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M., Sebastian, A., Prasad, M., & Rinklebe, J. (2021). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 1-52.
  • Erdem, H. (2021). The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi Journal of Biological Sciences, 28(7), 3965-3971.
  • Erdem, H., Kinay, A., Günal, E., Yaban, H., & Tutuş, Y. (2017). The effects of biochar application on cadmium uptake of tobacco. Carpathian Journal of Earth and Environmental Sciences, 12(2).
  • Erdem, H., Kınay, A., Ozturk, M., & Tutus, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars. Journal of Food, Agriculture & Environment, 10(1), 965-969.
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782.
  • Gouia, H., Ghorbal, M. H., & Meyer, C. (2000). Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, 38(7-8), 629-638.
  • Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., Dantu, P. K., & Mishra, S. (2020). Effect of heavy metals on plant growth: an overview. Contaminants in agriculture, 79-101.
  • Grant, C. A., Buckley, W. T., Bailey, L. D., & Selles, F. (1998). Cadmium accumulation in crops. Canadian Journal of Plant Science, 78(1), 1-17. https://doi.org/10.4141/p96-100
  • Greger, M., & Löfstedt, M. (2004). Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 44(2), 501-507. Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112.
  • Hart, J. J., Welch, R. M., Norvell, W. A., Sullivan, L. A., & Kochian, L. V. (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiology, 116(4), 1413-1420.
  • He, J., Zhou, J., Wan, H., Zhuang, X., Li, H., Qin, S., & Lyu, D. (2020). Rootstock–scion interaction affects cadmium accumulation and tolerance of malus. Frontiers in Plant Science, 11, 1264.
  • Hussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188.
  • Hussain, T., Murtaza, G., Ghafoor, A., & Cheema, M. A. (2016). The Cd: Zn ratio in a soil affects Cd toxicity in spinach (Spinacea oleracea L.). Pak. J. Agri. Sci, 53(2), 419-424. Ibacache, A. G., & Sierra, C. B. (2009). Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chilean Journal of Agricultural Research, 69(4), 503-508.
  • Kacar, B., & İnal, A. (2008). Bitki analizleri (Vol. No: 1241). Nobel Yayın.
  • Kaya, C., Okant, M., Ugurlar, F., Alyemeni, M. N., Ashraf, M., & Ahmad, P. (2019). Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225, 627-638.
  • Khurana, M., & Jhanji, S. (2014). Influence of cadmium on dry matter yield, micronutrient content and its uptake in some crops. Journal of Environmental biology, 35(5), 865.
  • Kim, S., Chang, A., Page, A., & Warneke, J.(1988). Relative concentrations of cadmium and zinc in tissue of selected food plants grown on sludge‐treated soils (0047-2425).
  • Kinay, A., Erdem, H., & Karakoç, E. (2021). Chemical Composition of Tobacco Genotypes in Response to Zinc Application Under Cadmium Toxicity. Romanian Agricultural Research, 38, 301-310.
  • Lecourt, J., Lauvergeat, V., Ollat, N., Vivin, P., & Cookson, S. J. (2015). Shoot and root ionome responses to nitrate supply in grafted grapevines are rootstock genotype dependent. Australian Journal of Grape and Wine Research, 21(2), 311-318.
  • Lin, Y.-F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69(19), 3187-3206.
  • Loi, N., Sanzharova, N., Shchagina, N., & Mironova, M. (2018). The effect of cadmium toxicity on the development of lettuce plants on contaminated sod-podzolic soil. Russian Agricultural Sciences, 44(1), 49-52.
  • Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M., & Wagner, G. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Advances in agronomy, 83(1), 111-118.
  • Luo, Z.-B., He, J., Polle, A., & Rennenberg, H. (2016). Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 34(6), 1131-1148.
  • Miklós, E., & Erdei, L. (1997). Effect of cadmium on growth and ion transport of grapevine. V International Symposium on Grapevine Physiology 526
  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological research, 48(1), 1-7.
  • Nascimento, V., Nogueira, G., Monteiro, G., Júnior, W., de Freitas, J. M. N., & Neto, C. (2021). Influence of Heavy Metals on the Nitrogen Metabolism in Plants. In Nitrogen in Agriculture-Physiological, Agricultural and Ecological Aspects. IntechOpen.
  • Obata, H., & Umebayashi, M. (1993). Production of SH compounds in higher plants of different tolerance to Cd. Plant and Soil, 155(1), 533-536.
  • Pereira, B. F. F., Rozane, D. E., Araújo, S. R., Barth, G., Queiroz, R. J. B., Nogueira, T. A. R., Moraes, M. F., Cabral, C. P., Boaretto, A. E., & Malavolta, E. (2011). Cadmium availability and accumulation by lettuce and rice. Revista Brasileira de Ciência do Solo, 35, 645-654.
  • Rasool, M., Anwar-ul-Haq, M., Jan, M., Akhtar, J., Ibrahim, M., & Iqbal, J. (2020). 27. Phytoremedial potential of maize (Zea mays L.) hybrids against cadmium (Cd) and lead (Pb) toxicity. Pure and Applied Biology (PAB), 9(3), 1932-1945.
  • Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C., Zia-ur-Rehman, M., Zahir, Z. A., Rinklebe, J., Tack, F. M., & Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90-105.
  • Rizwan, M., Ali, S., ur Rehman, M. Z., Rinklebe, J., Tsang, D. C., Bashir, A., Maqbool, A., Tack, F., & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: a review. Science of the Total Environment, 631, 1175-1191.
  • Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant physiology, 109(4), 1427-1433. Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161.
  • Sgherri, C., Milone, M. T. A., Clijsters, H., & Navari-Izzo, F. (2001). Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. Journal of plant physiology, 158(11), 1439-1447.
  • Sgherri, C., Quartacci, M. F., Izzo, R., & Navari-Izzo, F. (2002). Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiology and Biochemistry, 40(6-8), 591-597.
  • Shrivastava, M., Khandelwal, A., & Srivastava, S. (2019). Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals. In Plant-metal interactions (pp. 79-97). Springer.
  • Song, X., Yue, X., Chen, W., Jiang, H., Han, Y., & Li, X. (2019). Detection of cadmium risk to the photosynthetic performance of Hybrid Pennisetum. Frontiers in plant science, 10, 798.
  • Stachowiak, A., Bosiacki, M., Świerczyński, S., & Kolasiński, M. (2015). Influence of rootstocks on different sweet cherry cultivars and accumulation of heavy metals in leaves and fruit. Horticultural Science, 42(4), 193-202.
  • Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7.
  • Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A., Nicoloso, F. T., Soriani, H. H., De Conti, L., Kulmann, M. S., Schneider, R. O., & Brunetto, G. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222, 203-212.
  • Wang, W. (1987). Root elongation method for toxicity testing of organic and inorganic pollutants. Environmental Toxicology and Chemistry: An International Journal, 6(5), 409-414.
  • Wu, F., Wu, H., Zhang, G., & Bachir, D. M. (2004). Differences in growth and yield in response to cadmium toxicity in cotton genotypes. Journal of Plant Nutrition and Soil Science, 167(1), 85-90.
  • Wu, F., Zhang, G., & Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental botany, 50(1), 67-78.
  • Xiao, Y., Li, Y., Shi, Y., Li, Z., Zhang, X., Liu, T., Farooq, T. H., Pan, Y., Chen, X., & Yan, W. (2022). Combined toxicity of zinc oxide nanoparticles and cadmium inducing root damage in Phytolacca americana L. Science of The Total Environment, 806, 151211.
  • Yang, J., Bao, H., Wan, J., Ding, Y., Wang, F., & Zhu, C. (2021). Screening of tomato cultivars in cadmium-polluted areas and study on their antioxidant capacity. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 37(1), 242-252.
  • Yuan, H., Sun, L., Tai, P., Liu, W., Li, X., & Hao, L. (2019). Effects of grafting on root-to-shoot cadmium translocation in plants of eggplant (Solanum melongena) and tomato (Solanum lycopersicum). Science of The Total Environment, 652, 989-995.
  • Zamboni, M., Garavani, A., Gatti, M., Vercesi, A., Parisi, M. G., Bavaresco, L., & Poni, S. (2016). Vegetative, physiological and nutritional behavior of new grapevine rootstocks in response to different nitrogen supply. Scientia Horticulturae, 202, 99-106.
  • Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C., & Lin, Y. (2022). Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells, 11(3), 569.
  • Zhi, Y., Sun, T., Zhou, Q., & Leng, X. (2020). Screening of safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 10(1), 1-12.
  • Zhou, J., Wan, H., He, J., Lyu, D., & Li, H. (2017). Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Frontiers in plant science, 8, 966.
  • Zhou, J., Zhang, C., Du, B., Cui, H., Fan, X., Zhou, D., & Zhou, J. (2020). Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environmental Pollution, 265, 115045.
  • Zhou, Z., Zhang, B., Liu, H., Liang, X., Ma, W., Shi, Z., & Yang, S. (2019). Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. Ecotoxicology and Environmental Safety, 183, 109562.
  • Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M., Ahmad, M., Ali, N., & Maqsood, M. F. (2021). Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies. Journal of Soil Science and Plant Nutrition, 1-58.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Rüstem Cangi 0000-0002-8264-9844

Halil Erdem 0000-0002-3296-1549

Banu Kılıç 0000-0002-6392-7271

Yayımlanma Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Cangi, R., Erdem, H., & Kılıç, B. (2022). Determination of Grapevine Rootstocks Resistancy to Cadmium (Cd) Toxicity. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 39(2), 120-128. https://doi.org/10.55507/gopzfd.1088185