Araştırma Makalesi
BibTex RIS Kaynak Göster

Tetranychus urticae Koch (Acari: Tetranychidae)'de Wolbachia Endosimbiyontu ve Spirodiclofen Direnci Arasındaki İlişki

Yıl 2023, , 115 - 124, 03.01.2024
https://doi.org/10.55507/gopzfd.1339608

Öz

Tetranychus urticae Koch (Acari: Tetranychidae), dünyada birçok kültür bitkisi çeşidinde ekonomik kayıplara neden olan önemli bir zararlıdır. Bu çalışmada, T. urticae' de spirodiclofen direnci ile Wolbachia varlığı arasındaki ilişkinin belirlenmesi amaçlanmıştır. Bu nedenle, T. urticae' nin hem Wolbachia ile enfekteli olan (GSS) hem de enfekteli olmayan (GSSN) popülasyonlarında eş zamanlı spirodiclofen seleksiyonu yapılmıştır. T. urticae' de lethal konsantrasyon (LC) değerlerini belirlemek için kuru rezidü yöntemi kullanılmıştır. Biyoassay denemelerde akarın larva dönemine uygulanmıştır. Lethal konsantrasyon çalışmaları 7 doz +1 kontrol ve 3 tekerrürlü olarak yapılmıştır. 7. gün sonunda ölü-canlı sayımı yapılarak direnç oranları belirlenmiştir. T. urticae'nin Wolbachia ile enfekteli olan son seleksiyonunda 23 kat spirodiclofen direnci belirlenirken, Wolbachia ile enfekteli olmayan son seleksiyonda 103 kat direnç belirlenmiştir. Wolbachia varlığının, Wolbachia ile enfekte olmayan tüm seleksiyon popülasyonlarında, Wolbachia ile enfekte olmuş seleksiyon popülasyonlarına kıyasla oldukça düşük olduğu belirlenmiştir. Sonuç olarak T. urticae'de spirodiclofen direnci ile Wolbachia endosymbiont arasında negatif bir ilişki olabileceği ve bu ilişki kapsamında esteraz enziminin direnç gelişiminde etkili olabileceği düşünülmektedir.

Kaynakça

  • Badieinia, F., Khajehali, J., Nauen, R., Dermauw, W., & Van Leeuwen, T. (2020). Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Protection 134: 105-166.
  • Breeuwer, J.A.J., Stouthamer, R., Barns, S.M., Pelletier, D.A., Weisburg, W.G., & Werren, J.H, (1992). Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Molecular Biology, 1(1): 25-36. https://doi.org/10.1111/j.1365-2583.1993.tb00074.x.
  • Bretschneider, T., Fischer, R., & Nauen, R. (2007). Inhibitors of lipid synthesis (acetyl-CoAcarboxylase inhibitors) in modern crop crotection compounds. Weinheim Germany.
  • Broderick, N.A., Raffa, K.F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. PNAS, 103:15196-15199.
  • Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbic, M., Clark, R.M,, Feyereisen, R., & Van Leeuwen T (2013.) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America, 110:113–122.
  • Dong Liu, X., & Fang Guo, H. (2019). Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinioniin Insect, Science, 33:84–90, https://doi.org/10.1016/j.cois.2019.05.003.
  • Ferreira, C.B,S., Andrade, F.H.N., Rodrigues, A.R.S,, Siqueira, H.A.A., & Gondim, M.G.C. (2015). Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protection, 67:77-83, https://doi.org/10.1016/j.cropro.2014.09.022.
  • Ghanim, M., & Kontsedalov, S. (2009). Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Managament Science, 65(9):939-942, https://doi.org/10.1002/ps.1795.
  • Gotoh, T., Noda, H., & Hong, X.Y. (2003). Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Journal of Heredity, 91:208–216.
  • Gotoh, T., Oku, H., Moriya, K., & Odawara, M. (1995). Nucleus-cytoplasm interactions causing reproductive incompatibility between two populations of Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Journal of Heredity, 74:405–414.
  • Hayatsu, M., Hirano, M., & Tokuda, S. (2000). Involvement of two plasmids in fenitrotion degradation by Burkholderia sp. strain NF100. Applied Environmental Microbiology, 66:1737-1740, https://doi.org/10.1128/AEM.66.4.1737-1740.2000.
  • Helle, W., & Sabelis, M.W. (1985). Spider mites: their biology, natural enemies and control. Amsterdam, Elsevier.
  • Hertig, M., & Wolbach, S.B. (1924). Studies on rickettsia- like microorganisms in insects. Journal of Medical Research, 44:329-374.
  • Jeyaprakash, A., & Hoy, M.A. (2000). Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76%of sixty-three arthropod species. Insect Molecular Biology, 9(4): 393-405, https://doi.org/10.1046/j.1365-2583.2000.00203.x.
  • Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). ‘Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 109: 8618- 8622.
  • Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M., & Ghanim, M. (2008). The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Managament Science, 64:789-792, https://doi.org/10.1002/ps.1595.
  • Kramer, T., & Nauen, R. (2011). Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch) (Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Managament Science, 67:1285–1293, https://doi.org/10.1002/ps.2184.
  • Miresmailli, S., & Isman, M.B. (2006). Efficacy and persistence of rosemary oil as an acaricide against two spotted spider mite (Acari: Tetranychidae) on greenhouse tomato. Journal of Economic Entomology, 99:2015–2023, https://doi.org/10.1093/jee/99.6.2015.
  • Pina, T., Sabater-Muñoz, B., Cabedo-López, M., Cruz-Miralles, J., Jaques, J.A., & Hurtado-Ruiz, M.A. (2020). Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. Experimental and Applied Acarology, 3:1-21.
  • Rauch, N., & Nauen, R. (2003). Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemical Physiology,74:91-101, https://doi.org/10.1016/S0048-3575(02)00150-5.
  • Rose, R.L., Barbhaiya, L., Roe, R., Rock, G., & Hodgson, E. (1995). Cytochrome p450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemical Physiology, 51:178-191, https://doi.org/10.1006/pest.1995.1018.
  • Shen, S.K., & Dowd, P.F. (1991). Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomology Experimental Applied, 60:51-59, https://doi.org/10.1111/j.1570-7458.1991.tb01522.x.
  • Sinkins, S.P., & O’Neill, L.S. (2000). Wolbachia as a vehicle to modify insect populations. In: Handler AM, James AA (ed) Inscet trasngenesis- methods and applications. Boca, Raton, pp: 271- 284.
  • Stouthamer, R., Breeuwer, J.A.J., & Hurst, G.D.D. (1999). Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review Microbiology, 53(1):71- 102.
  • Stumpf, N., & Nauen, R. (2002). Biochemical markers linked to abamaectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72:111-121, https://doi.org/10.1006/pest.2001.2583.
  • Su, Q., Zhou, X.M., & Zhang, Y. J. (2013). Symbiont-mediated functions in insect hosts. Communicative & Integrative Biology, 6: e23804, https://doi.org/10.4161/cib.23804.
  • Vala, F., Weeks, A., Claessen, D., Breeuwer, J.A.J., & Sabelıs, M.W. (2002). Within- and between-population variation for Wolbachia-induced reproductive incompatibility in a haplodiploid mite. Evolution, 56:1331-1339.
  • Van Leeuwen, T., Pottelberge, S.V., & Tirry, L. (2005). Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Managament Science, 61:499-507.
  • Van Leuween, T., Tirry, L., Yamamoto, A., Nauen, R., & Dermauw, W. (2015). The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemical Physiology, 12: 12–21.
  • Van Pottelberge, S., Khajehali, J., & Van Leeuwen, T. (2009a). Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Experimental Applied Acarology, 47: 301-309.
  • Van Pottelberge, S., Van Leeuwen, T., & Khajehali, J. (2009b). Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Managament Science, 65:358-366, https://doi.org/10.1002/ps.1698.
  • Wachendorff, U., Nauen, R., Schnorbach, H.J., Rauch, N., & Elbert, A. (2002). The biological profile of spirodiclofen (Envidor®)–a new selective Tetronic acid acaricide. Bayer Crop Science, 55:149–176.
  • Zélé, F., Weill, M., & Magalhães, S. (2018). Identifcation of spider mite species and their endosymbionts using multiplex PCR. Experimental Applied Acarology, 74(2): 123–138.
  • Zhang, Y.K., Zhang, K.J., Sun, J.T., Yang, X.M., Ge, C. & Hong, X.Y. (2013). Diversity of Wolbachia in natural populations of spider mites (genus Tetranychus): evidence for complex infection history and disequilibrium distribution. Invertebrate Microbiology, 65(3): 731–739.
  • Zhang, Z. (2003). Mites of greenhouses: identification biology and control. CABI Publishing, Wallingford.

The Relationship between Spirodiclofen Resistance and Wolbachia Endosymbiont in Tetranychus urticae Koch (Acari: Tetranychidae)

Yıl 2023, , 115 - 124, 03.01.2024
https://doi.org/10.55507/gopzfd.1339608

Öz

Tetranychus urticae Koch (Acari: Tetranychidae) is an important pest that causes economic losses in many varieties of cultivated plants around the world. In this study, it was aimed at determiningthe relationship between spirodiclofen resistance in T. urticae and the presence of Wolbachia. Therefore, simultaneous selection of spirodiclofen was performed in both Wolbachia infected (GSS) and uninfected (GSSN) populations of T. urticae. The dry residue method was used to determine lethal concentration (LC) values in T. urticae. Bioassay experiments were applied to the larval stage of the mite. The LC value studies were established as 7 doses +1 control and 3 replications. Dead-alive counts were made at the end of the 7th day and resistance ratios were determined. In the last selection of T. urticae with Wolbachia infection, 23-fold spirodiclofen resistance was determined, and in the last selection without Wolbachia infection, 103-fold resistance was determined. The presence of Wolbachia was found to be quite low in all Wolbachia-uninfected selection populations compared to Wolbachia-infected populations. As a result, it is thought that there may be a negative relationship between spirodiclofen resistance and Wolbachia endosymbiont in T. urticae, and that esterase enzyme may have an effect on the development of resistance within the scope of this relationship.

Kaynakça

  • Badieinia, F., Khajehali, J., Nauen, R., Dermauw, W., & Van Leeuwen, T. (2020). Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Protection 134: 105-166.
  • Breeuwer, J.A.J., Stouthamer, R., Barns, S.M., Pelletier, D.A., Weisburg, W.G., & Werren, J.H, (1992). Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Molecular Biology, 1(1): 25-36. https://doi.org/10.1111/j.1365-2583.1993.tb00074.x.
  • Bretschneider, T., Fischer, R., & Nauen, R. (2007). Inhibitors of lipid synthesis (acetyl-CoAcarboxylase inhibitors) in modern crop crotection compounds. Weinheim Germany.
  • Broderick, N.A., Raffa, K.F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. PNAS, 103:15196-15199.
  • Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbic, M., Clark, R.M,, Feyereisen, R., & Van Leeuwen T (2013.) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America, 110:113–122.
  • Dong Liu, X., & Fang Guo, H. (2019). Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinioniin Insect, Science, 33:84–90, https://doi.org/10.1016/j.cois.2019.05.003.
  • Ferreira, C.B,S., Andrade, F.H.N., Rodrigues, A.R.S,, Siqueira, H.A.A., & Gondim, M.G.C. (2015). Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protection, 67:77-83, https://doi.org/10.1016/j.cropro.2014.09.022.
  • Ghanim, M., & Kontsedalov, S. (2009). Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Managament Science, 65(9):939-942, https://doi.org/10.1002/ps.1795.
  • Gotoh, T., Noda, H., & Hong, X.Y. (2003). Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Journal of Heredity, 91:208–216.
  • Gotoh, T., Oku, H., Moriya, K., & Odawara, M. (1995). Nucleus-cytoplasm interactions causing reproductive incompatibility between two populations of Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Journal of Heredity, 74:405–414.
  • Hayatsu, M., Hirano, M., & Tokuda, S. (2000). Involvement of two plasmids in fenitrotion degradation by Burkholderia sp. strain NF100. Applied Environmental Microbiology, 66:1737-1740, https://doi.org/10.1128/AEM.66.4.1737-1740.2000.
  • Helle, W., & Sabelis, M.W. (1985). Spider mites: their biology, natural enemies and control. Amsterdam, Elsevier.
  • Hertig, M., & Wolbach, S.B. (1924). Studies on rickettsia- like microorganisms in insects. Journal of Medical Research, 44:329-374.
  • Jeyaprakash, A., & Hoy, M.A. (2000). Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76%of sixty-three arthropod species. Insect Molecular Biology, 9(4): 393-405, https://doi.org/10.1046/j.1365-2583.2000.00203.x.
  • Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). ‘Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 109: 8618- 8622.
  • Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M., & Ghanim, M. (2008). The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Managament Science, 64:789-792, https://doi.org/10.1002/ps.1595.
  • Kramer, T., & Nauen, R. (2011). Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch) (Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Managament Science, 67:1285–1293, https://doi.org/10.1002/ps.2184.
  • Miresmailli, S., & Isman, M.B. (2006). Efficacy and persistence of rosemary oil as an acaricide against two spotted spider mite (Acari: Tetranychidae) on greenhouse tomato. Journal of Economic Entomology, 99:2015–2023, https://doi.org/10.1093/jee/99.6.2015.
  • Pina, T., Sabater-Muñoz, B., Cabedo-López, M., Cruz-Miralles, J., Jaques, J.A., & Hurtado-Ruiz, M.A. (2020). Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. Experimental and Applied Acarology, 3:1-21.
  • Rauch, N., & Nauen, R. (2003). Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemical Physiology,74:91-101, https://doi.org/10.1016/S0048-3575(02)00150-5.
  • Rose, R.L., Barbhaiya, L., Roe, R., Rock, G., & Hodgson, E. (1995). Cytochrome p450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemical Physiology, 51:178-191, https://doi.org/10.1006/pest.1995.1018.
  • Shen, S.K., & Dowd, P.F. (1991). Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomology Experimental Applied, 60:51-59, https://doi.org/10.1111/j.1570-7458.1991.tb01522.x.
  • Sinkins, S.P., & O’Neill, L.S. (2000). Wolbachia as a vehicle to modify insect populations. In: Handler AM, James AA (ed) Inscet trasngenesis- methods and applications. Boca, Raton, pp: 271- 284.
  • Stouthamer, R., Breeuwer, J.A.J., & Hurst, G.D.D. (1999). Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review Microbiology, 53(1):71- 102.
  • Stumpf, N., & Nauen, R. (2002). Biochemical markers linked to abamaectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72:111-121, https://doi.org/10.1006/pest.2001.2583.
  • Su, Q., Zhou, X.M., & Zhang, Y. J. (2013). Symbiont-mediated functions in insect hosts. Communicative & Integrative Biology, 6: e23804, https://doi.org/10.4161/cib.23804.
  • Vala, F., Weeks, A., Claessen, D., Breeuwer, J.A.J., & Sabelıs, M.W. (2002). Within- and between-population variation for Wolbachia-induced reproductive incompatibility in a haplodiploid mite. Evolution, 56:1331-1339.
  • Van Leeuwen, T., Pottelberge, S.V., & Tirry, L. (2005). Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Managament Science, 61:499-507.
  • Van Leuween, T., Tirry, L., Yamamoto, A., Nauen, R., & Dermauw, W. (2015). The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemical Physiology, 12: 12–21.
  • Van Pottelberge, S., Khajehali, J., & Van Leeuwen, T. (2009a). Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Experimental Applied Acarology, 47: 301-309.
  • Van Pottelberge, S., Van Leeuwen, T., & Khajehali, J. (2009b). Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Managament Science, 65:358-366, https://doi.org/10.1002/ps.1698.
  • Wachendorff, U., Nauen, R., Schnorbach, H.J., Rauch, N., & Elbert, A. (2002). The biological profile of spirodiclofen (Envidor®)–a new selective Tetronic acid acaricide. Bayer Crop Science, 55:149–176.
  • Zélé, F., Weill, M., & Magalhães, S. (2018). Identifcation of spider mite species and their endosymbionts using multiplex PCR. Experimental Applied Acarology, 74(2): 123–138.
  • Zhang, Y.K., Zhang, K.J., Sun, J.T., Yang, X.M., Ge, C. & Hong, X.Y. (2013). Diversity of Wolbachia in natural populations of spider mites (genus Tetranychus): evidence for complex infection history and disequilibrium distribution. Invertebrate Microbiology, 65(3): 731–739.
  • Zhang, Z. (2003). Mites of greenhouses: identification biology and control. CABI Publishing, Wallingford.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Pestisititler ve Toksikoloji
Bölüm Araştırma Makaleleri
Yazarlar

Betül Bal 0000-0001-6545-8627

Sibel Yorulmaz 0000-0003-3836-5673

Yayımlanma Tarihi 3 Ocak 2024
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bal, B., & Yorulmaz, S. (2024). The Relationship between Spirodiclofen Resistance and Wolbachia Endosymbiont in Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 40(3), 115-124. https://doi.org/10.55507/gopzfd.1339608