Araştırma Makalesi
BibTex RIS Kaynak Göster

Machine learning-based estimation of daily ETo under limited meteorological data

Yıl 2025, Cilt: 42 Sayı: 3, 250 - 261, 30.12.2025
https://doi.org/10.55507/gopzfd.1709027

Öz

Accurate estimation of reference crop evapotranspiration (ETo) is essential for sustainable irrigation management, particularly in regions facing water scarcity challenges. This study evaluates the performance of three machine learning (ML) models: Artificial Neural Networks (ANN), Light Gradient Boosting Machines (LGBM), and Random Forest Regression (RFR) for estimating daily ETo in Alanya, Turkey, under varying scenarios of limited meteorological input availability. Ten input scenarios comprising different combinations of temperature, sunshine duration, relative humidity, and wind speed were analyzed using data spanning from 1975 to 2023. Results indicate significant variability in model performance, with ANN and LGBM consistently outperforming RFR across most scenarios. Among single-variable scenarios, temperature-based predictions were the most reliable (R2=0.66). Two variable scenarios combining temperature and sunshine duration notably enhanced prediction accuracy (R2=0.85). The highest predictive accuracy was achieved with a three-variable combination of temperature, sunshine duration, and wind speed (R2=0.89). This research underscores the potential of ML models, particularly ANN and LGBM, in accurately estimating ETo with limited meteorological data, contributing significantly to sustainable water management practices in Mediterranean climates.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Akar, F., Katipoğlu, O. M., Yeşilyurt, S. N., & Taş, M. B. H. (2023). Evaluation of tree-based machine learning and deep learning techniques in temperature-based potential evapotranspiration prediction. Polish J. Environ. Stud, 32, 1009-1023. http://doi.org/10.15244/pjoes/156927
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Aly, M. S., Darwish, S. M., & Aly, A. A. (2024). High performance machine learning approach for reference evapotranspiration estimation. Stochastic Environmental Research and Risk Assessment, 38(2), 689-713. https://doi.org/10.1007/s00477-023-02594-y
  • Amer, Z., & Farah, B. (2025). Evaporation forecasting using different machine learning models in Beni Haroun Dam, Algeria. Theoretical and Applied Climatology, 156(2), 121. https://doi.org/10.1007/s00704-024-05327-5
  • Arslan, F., & Kartal, S. (2023). Water management effect on tropical fruits: Case study of Alanya, Turkey. Engineering For Rural Development, Jelgava, 533-538.
  • Arslan, F., Alcon, F., Kartal, S., Erdoğan, K., & Zema, D. A. (2024). Sustainability of collective irrigation under water competition between agriculture and civil uses: The case study of Alanya Water Users Association (Türkiye). Agricultural Water Management, 306, 109167. https://doi.org/10.1016/j.agwat.2024.109167
  • Baishnab, U., Hossen Sajib, M. S., Islam, A., Akter, S., Hasan, A., Roy, T., & Das, P. (2025). Deep learning approaches for short-crop reference evapotranspiration estimation: a case study in Southeastern Australia. Earth Science Informatics, 18(1), 1-17. https://doi.org/10.1007/s12145-024-01616-9
  • Bijlwan, A., Pokhriyal, S., Ranjan, R., Singh, R. K., & Jha, A. (2024). Machine learning methods for estimating reference evapotranspiration. Journal of Agrometeorology, 26(1), 63-68. https://doi.org/10.54386/jam.v26i1.2462
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • Cemek, B., Tasan, S., Canturk, A., Tasan, M., & Simsek, H. (2023). Machine learning techniques in estimation of eggplant crop evapotranspiration. Applied Water Science, 13(6), 136. https://doi.org/10.1007/s13201-023-01942-1
  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314. https://doi.org/10.1007/BF02551274
  • Deveci, H., Önler, B., & Erdem, T. (2025). Modeling the Effect of Soil Type Change on Irrigation Water Requirements of Sunflower and Wheat Using CROPWAT 8.0. Water, 17(10), 1437. https://doi.org/10.3390/w17101437
  • Dimitriadou, S., & Nikolakopoulos, K. G. (2022). Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece. Water, 14(13), 2027. https://doi.org/10.3390/w14132027
  • Elagib, N. A., & Musa, A. A. (2023). Correcting Hargreaves‐Samani formula using geographical coordinates and rainfall over different timescales. Hydrological Processes, 37(1), e14790. https://doi.org/10.1002/hyp.14790
  • Elbeltagi, A., Deng, J., Wang, K., Malik, A., & Maroufpoor, S. (2020). Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment. Agricultural Water Management, 241, 106334. https://doi.org/10.1016/j.agwat.2020.106334
  • Elbeltagi, A., Nagy, A., Mohammed, S., Pande, C. B., Kumar, M., Bhat, S. A., ... & Juhász, C. (2022). Combination of limited meteorological data for predicting reference crop evapotranspiration using artificial neural network method. Agronomy, 12(2), 516. https://doi.org/10.3390/agronomy12020516
  • Emekli, Y., & Baştuğ, R. (2007). Antalya’da tarla koşullarinda bermuda çiminin su tüketimi ve bazi kiyas bitkİ su tüketimi eşitliklerinin geçerliliğinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture, 20(1), 45-57.
  • Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758
  • Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., ... & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and forest meteorology, 263, 225-241. https://doi.org/10.1016/j.agrformet.2018.08.019
  • Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376-383. https://doi.org/10.1016/j.jhydrol.2016.02.053
  • Feng, Y., Jia, Y., Cui, N., Zhao, L., Li, C., & Gong, D. (2017). Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management, 181, 1-9. https://doi.org/10.1016/j.agwat.2016.11.010
  • Ferreira, L. B., & da Cunha, F. F. (2020). New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agricultural Water Management, 234, 106113. https://doi.org/10.1016/j.agwat.2020.106113
  • Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology, 572, 556-570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  • Gong, D., Hao, W., Gao, L., Feng, Y., & Cui, N. (2021). Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in China. Computers and Electronics in Agriculture, 187, 106294. https://doi.org/10.1016/j.compag.2021.106294
  • Gültaş, H. T., Ahi, Y., & Çakmak, B. (2025). Assessment of water resources status using the water footprint concept: The case of Tekirdağ province. Black Sea Journal of Agriculture, 8(2), 186-193. https://doi.org/10.47115/bsagriculture.1624100
  • Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management, 217, 303-315. https://doi.org/10.1016/j.agwat.2019.03.015
  • Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer. https://doi.org/10.1007/978-0-387-21606-5
  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  • Karaca, C., Aydınşakir, K., Dinç, N., Büyüktaş, D., Baştuğ, R., & Polat, B. (2018). Comparison of Measured and Estimated Evapotranspiration of Pomegranate Grown Under Mediterranean Conditions. Ziraat Fakültesi Dergisi, 140-150.
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
  • Liu, H., Li, Y., Josef, T., Zhang, R., & Huang, G. (2014). Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. Journal of Geographical Sciences, 24, 93-112. https://doi.org/10.1007/s11442-014-1075-5
  • Liuzzo, L., Viola, F., & Noto, L. V. (2016). Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy. Theoretical and applied climatology, 123, 43-62. https://doi.org/10.1007/s00704-014-1342-5
  • Mattar, M. A. (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management, 198, 28-38. https://doi.org/10.1016/j.agwat.2017.12.017
  • Mehta, D., Das, P. P., Ghosh, S., Mishra, S., Alkhayyat, A., & Sharma, V. (2023). A normalized ANN model for earthquake estimation. In May 2023 2nd international conference on applied artificial intelligence and computing (ICAAIC) (pp. 151-155). IEEE.
  • Nikolaou, G., Neocleous, D., Evangelides, E., & Kitta, E. (2025). A Decision Support System for Irrigation Scheduling Using a Reduced-Size Pan. Agronomy, 15(4), 848. https://doi.org/10.3390/agronomy15040848
  • Niranjan, S., & Nandagiri, L. (2021). Effect of local calibration on the performance of the Hargreaves reference crop evapotranspiration equation. Journal of Water and Climate Change, 12(6), 2654-2673. https://doi.org/10.2166/wcc.2021.360
  • Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S. (2024). Data-driven reference evapotranspiration (ET0) estimation: A comparative study of regression and machine learning techniques. Environment, Development and Sustainability, 26(5), 12679-12706. https://doi.org/10.1007/s10668-023-03978-4
  • Rashid Niaghi, A., Hassanijalilian, O., & Shiri, J. (2021). Estimation of reference evapotranspiration using spatial and temporal machine learning approaches. Hydrology, 8(1), 25. https://doi.org/10.3390/hydrology8010025
  • Santos, P. A. B. D., Schwerz, F., Carvalho, L. G. D., Baptista, V. B. D. S., Marin, D. B., Ferraz, G. A. E. S., ... & Bambi, G. (2023). Machine Learning and Conventional Methods for Reference Evapotranspiration Estimation Using Limited-Climatic-Data Scenarios. Agronomy, 13(9), 2366. https://doi.org/10.3390/agronomy13092366
  • Sattari, M. T., Apaydin, H., Band, S. S., Mosavi, A., & Prasad, R. (2021). Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrology and Earth System Sciences, 25(2), 603-618. https://doi.org/10.5194/hess-25-603-2021
  • Sharma, G., Singh, A., & Jain, S. (2022). Hybrid deep learning techniques for estimation of daily crop evapotranspiration using limited climate data. Computers and Electronics in Agriculture, 202, 107338. https://doi.org/10.1016/j.compag.2022.107338
  • Sun, X., Zhang, B., Dai, M., Gao, R., Jing, C., Ma, K., ... & Gu, X. (2024). Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators. Frontiers in Plant Science, 15, 1354913. https://doi.org/10.3389/fpls.2024.1354913
  • Tabari, H., Kisi, O., Ezani, A., & Talaee, P. H. (2012). SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444, 78-89. https://doi.org/10.1016/j.jhydrol.2012.04.007
  • Taheri, M., Bigdeli, M., Imanian, H., & Mohammadian, A. (2025). An Overview of Evapotranspiration Estimation Models Utilizing Artificial Intelligence. Water, 17(9), 1384. https://doi.org/10.3390/w17091384
  • Tang, D., Feng, Y., Gong, D., Hao, W., & Cui, N. (2018). Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Computers and electronics in agriculture, 152, 375-384. https://doi.org/10.1016/j.compag.2018.07.029
  • Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V. P., ... & Bin Ahmad, B. (2018). New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water, 10(9), 1210. https://doi.org/10.3390/w10091210
  • Tikhamarine, Y., Malik, A., Souag-Gamane, D., & Kisi, O. (2020). Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research, 27, 30001-30019. https://doi.org/10.1007/s11356-020-08792-3
  • TSMS. (2025). Turkish State Meteorological Service, climate data of long term season. Retrieved March 14, 2025, from https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx
  • Turhan, A., Kuscu, H., & Asık, B. B. (2022). The influence of irrigation strategies on tomato fruit yield and leaf nutrient contents. Gesunde pflanzen, 74(4), 1021-1027. https://doi.org/10.1007/s10343-022-00678-3
  • Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P., Kuglitsch, F. G., ... & Ziv, B. (2012). Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes.
  • Usta, S. (2024). AutoCAD Yazılımı Kullanılarak Alansal ve Zamansal Bazlı İklim Sınıfı ve Referans Evapotranspirasyon Haritalarının Oluşturulması–Doğu Anadolu Bölgesi, Türkiye Örneği. Turkish Journal of Agriculture-Food Science and Technology, 12(7), 1213-1224. https://doi.org/10.24925/turjaf.v12i7.1213-1224.6689
  • Valipour, M. (2015). Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Archives of Agronomy and Soil Science, 61(2), 239-255. https://doi.org/10.1080/03650340.2014.925107
  • Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123
  • Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. https://doi.org/10.1111/ina.12580
  • Wu, L., Peng, Y., Fan, J., & Wang, Y. (2019). Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50(6), 1730-1750. https://doi.org/10.2166/nh.2019.060
  • Wu, T., Zhang, W., Jiao, X., Guo, W., & Hamoud, Y. A. (2020). Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables. PLoS One, 15(6), e0235324. https://doi.org/10.1371/journal.pone.0235324
  • Yamaç, S. S., & Todorovic, M. (2020). Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management, 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875
  • Yong, S. L. S., Ng, J. L., Huang, Y. F., & Ang, C. K. (2023). Estimation of reference crop evapotranspiration with three different machine learning models and limited meteorological variables. Agronomy, 13(4), 1048. https://doi.org/10.3390/agronomy13041048
  • Zhang, J., Ding, Y., Zhu, L., Wan, Y., Chai, M., & Ding, P. (2025). Estimating and forecasting daily reference crop evapotranspiration in China with temperature-driven deep learning models. Agricultural Water Management, 307, 109268. https://doi.org/10.1016/j.agwat.2024.109268
  • Zhao, Y., Dong, H., Huang, W., He, S., & Zhang, C. (2024). Seamless terrestrial evapotranspiration estimation by machine learning models across the Contiguous United States. Ecological Indicators, 165, 112203. https://doi.org/10.1016/j.ecolind.2024.11

Sınırlı meteorolojik veriler altında Günlük ETo değerlerinin makine öğrenmesi ile tahmini

Yıl 2025, Cilt: 42 Sayı: 3, 250 - 261, 30.12.2025
https://doi.org/10.55507/gopzfd.1709027

Öz

Referans bitki su tüketiminin (ETo) doğru şekilde tahmin edilmesi, özellikle su kıtlığı yaşayan bölgelerde, sürdürülebilir sulama yönetimi açısından kritik öneme sahiptir. Bu çalışma, Türkiye’nin Alanya ilçesinde sınırlı meteorolojik veri koşulları altında günlük ETo tahmini için üç makine öğrenmesi modelinin: Yapay Sinir Ağları (ANN), Hafif Gradyan Hızlandırma Makineleri (LGBM) ve Rastgele Ormanı Regresyonu (RFR) performanslarını değerlendirmektedir. 1975–2023 yıllarını kapsayan veriler kullanılarak, sıcaklık, güneşlenme süresi, bağıl nem ve rüzgâr hızı gibi farklı meteorolojik değişkenlerin çeşitli kombinasyonlarından oluşan on farklı giriş senaryosu analiz edilmiştir. Sonuçlar, model performanslarında belirgin farklılıklar olduğunu ve ANN ile LGBM’nin çoğu senaryoda RFR’den daha başarılı sonuçlar verdiğini göstermektedir. Tek değişkenli senaryolar arasında, sıcaklık temelli tahminler en güvenilir sonuçları vermiştir (R2=0.66). Sıcaklık ve güneşlenme süresinin birlikte kullanıldığı iki değişkenli senaryo, tahmin doğruluğunu belirgin şekilde artırmıştır (R2=0.85). En yüksek doğruluk ise sıcaklık, güneşlenme süresi ve rüzgâr hızının birlikte kullanıldığı üç değişkenli senaryo ile elde edilmiştir (R2=0.89). Bu çalışma, özellikle ANN ve LGBM modellerinin sınırlı meteorolojik veri koşullarında ETo tahmini için yüksek doğrulukla uygulanabileceğini ortaya koyarak, Akdeniz iklim kuşağında sürdürülebilir su yönetimi uygulamalarına önemli katkılar sunmaktadır.

Kaynakça

  • Akar, F., Katipoğlu, O. M., Yeşilyurt, S. N., & Taş, M. B. H. (2023). Evaluation of tree-based machine learning and deep learning techniques in temperature-based potential evapotranspiration prediction. Polish J. Environ. Stud, 32, 1009-1023. http://doi.org/10.15244/pjoes/156927
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Aly, M. S., Darwish, S. M., & Aly, A. A. (2024). High performance machine learning approach for reference evapotranspiration estimation. Stochastic Environmental Research and Risk Assessment, 38(2), 689-713. https://doi.org/10.1007/s00477-023-02594-y
  • Amer, Z., & Farah, B. (2025). Evaporation forecasting using different machine learning models in Beni Haroun Dam, Algeria. Theoretical and Applied Climatology, 156(2), 121. https://doi.org/10.1007/s00704-024-05327-5
  • Arslan, F., & Kartal, S. (2023). Water management effect on tropical fruits: Case study of Alanya, Turkey. Engineering For Rural Development, Jelgava, 533-538.
  • Arslan, F., Alcon, F., Kartal, S., Erdoğan, K., & Zema, D. A. (2024). Sustainability of collective irrigation under water competition between agriculture and civil uses: The case study of Alanya Water Users Association (Türkiye). Agricultural Water Management, 306, 109167. https://doi.org/10.1016/j.agwat.2024.109167
  • Baishnab, U., Hossen Sajib, M. S., Islam, A., Akter, S., Hasan, A., Roy, T., & Das, P. (2025). Deep learning approaches for short-crop reference evapotranspiration estimation: a case study in Southeastern Australia. Earth Science Informatics, 18(1), 1-17. https://doi.org/10.1007/s12145-024-01616-9
  • Bijlwan, A., Pokhriyal, S., Ranjan, R., Singh, R. K., & Jha, A. (2024). Machine learning methods for estimating reference evapotranspiration. Journal of Agrometeorology, 26(1), 63-68. https://doi.org/10.54386/jam.v26i1.2462
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • Cemek, B., Tasan, S., Canturk, A., Tasan, M., & Simsek, H. (2023). Machine learning techniques in estimation of eggplant crop evapotranspiration. Applied Water Science, 13(6), 136. https://doi.org/10.1007/s13201-023-01942-1
  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314. https://doi.org/10.1007/BF02551274
  • Deveci, H., Önler, B., & Erdem, T. (2025). Modeling the Effect of Soil Type Change on Irrigation Water Requirements of Sunflower and Wheat Using CROPWAT 8.0. Water, 17(10), 1437. https://doi.org/10.3390/w17101437
  • Dimitriadou, S., & Nikolakopoulos, K. G. (2022). Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece. Water, 14(13), 2027. https://doi.org/10.3390/w14132027
  • Elagib, N. A., & Musa, A. A. (2023). Correcting Hargreaves‐Samani formula using geographical coordinates and rainfall over different timescales. Hydrological Processes, 37(1), e14790. https://doi.org/10.1002/hyp.14790
  • Elbeltagi, A., Deng, J., Wang, K., Malik, A., & Maroufpoor, S. (2020). Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment. Agricultural Water Management, 241, 106334. https://doi.org/10.1016/j.agwat.2020.106334
  • Elbeltagi, A., Nagy, A., Mohammed, S., Pande, C. B., Kumar, M., Bhat, S. A., ... & Juhász, C. (2022). Combination of limited meteorological data for predicting reference crop evapotranspiration using artificial neural network method. Agronomy, 12(2), 516. https://doi.org/10.3390/agronomy12020516
  • Emekli, Y., & Baştuğ, R. (2007). Antalya’da tarla koşullarinda bermuda çiminin su tüketimi ve bazi kiyas bitkİ su tüketimi eşitliklerinin geçerliliğinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture, 20(1), 45-57.
  • Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758
  • Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., ... & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and forest meteorology, 263, 225-241. https://doi.org/10.1016/j.agrformet.2018.08.019
  • Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376-383. https://doi.org/10.1016/j.jhydrol.2016.02.053
  • Feng, Y., Jia, Y., Cui, N., Zhao, L., Li, C., & Gong, D. (2017). Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management, 181, 1-9. https://doi.org/10.1016/j.agwat.2016.11.010
  • Ferreira, L. B., & da Cunha, F. F. (2020). New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agricultural Water Management, 234, 106113. https://doi.org/10.1016/j.agwat.2020.106113
  • Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology, 572, 556-570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  • Gong, D., Hao, W., Gao, L., Feng, Y., & Cui, N. (2021). Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in China. Computers and Electronics in Agriculture, 187, 106294. https://doi.org/10.1016/j.compag.2021.106294
  • Gültaş, H. T., Ahi, Y., & Çakmak, B. (2025). Assessment of water resources status using the water footprint concept: The case of Tekirdağ province. Black Sea Journal of Agriculture, 8(2), 186-193. https://doi.org/10.47115/bsagriculture.1624100
  • Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management, 217, 303-315. https://doi.org/10.1016/j.agwat.2019.03.015
  • Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer. https://doi.org/10.1007/978-0-387-21606-5
  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  • Karaca, C., Aydınşakir, K., Dinç, N., Büyüktaş, D., Baştuğ, R., & Polat, B. (2018). Comparison of Measured and Estimated Evapotranspiration of Pomegranate Grown Under Mediterranean Conditions. Ziraat Fakültesi Dergisi, 140-150.
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
  • Liu, H., Li, Y., Josef, T., Zhang, R., & Huang, G. (2014). Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. Journal of Geographical Sciences, 24, 93-112. https://doi.org/10.1007/s11442-014-1075-5
  • Liuzzo, L., Viola, F., & Noto, L. V. (2016). Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy. Theoretical and applied climatology, 123, 43-62. https://doi.org/10.1007/s00704-014-1342-5
  • Mattar, M. A. (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management, 198, 28-38. https://doi.org/10.1016/j.agwat.2017.12.017
  • Mehta, D., Das, P. P., Ghosh, S., Mishra, S., Alkhayyat, A., & Sharma, V. (2023). A normalized ANN model for earthquake estimation. In May 2023 2nd international conference on applied artificial intelligence and computing (ICAAIC) (pp. 151-155). IEEE.
  • Nikolaou, G., Neocleous, D., Evangelides, E., & Kitta, E. (2025). A Decision Support System for Irrigation Scheduling Using a Reduced-Size Pan. Agronomy, 15(4), 848. https://doi.org/10.3390/agronomy15040848
  • Niranjan, S., & Nandagiri, L. (2021). Effect of local calibration on the performance of the Hargreaves reference crop evapotranspiration equation. Journal of Water and Climate Change, 12(6), 2654-2673. https://doi.org/10.2166/wcc.2021.360
  • Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S. (2024). Data-driven reference evapotranspiration (ET0) estimation: A comparative study of regression and machine learning techniques. Environment, Development and Sustainability, 26(5), 12679-12706. https://doi.org/10.1007/s10668-023-03978-4
  • Rashid Niaghi, A., Hassanijalilian, O., & Shiri, J. (2021). Estimation of reference evapotranspiration using spatial and temporal machine learning approaches. Hydrology, 8(1), 25. https://doi.org/10.3390/hydrology8010025
  • Santos, P. A. B. D., Schwerz, F., Carvalho, L. G. D., Baptista, V. B. D. S., Marin, D. B., Ferraz, G. A. E. S., ... & Bambi, G. (2023). Machine Learning and Conventional Methods for Reference Evapotranspiration Estimation Using Limited-Climatic-Data Scenarios. Agronomy, 13(9), 2366. https://doi.org/10.3390/agronomy13092366
  • Sattari, M. T., Apaydin, H., Band, S. S., Mosavi, A., & Prasad, R. (2021). Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrology and Earth System Sciences, 25(2), 603-618. https://doi.org/10.5194/hess-25-603-2021
  • Sharma, G., Singh, A., & Jain, S. (2022). Hybrid deep learning techniques for estimation of daily crop evapotranspiration using limited climate data. Computers and Electronics in Agriculture, 202, 107338. https://doi.org/10.1016/j.compag.2022.107338
  • Sun, X., Zhang, B., Dai, M., Gao, R., Jing, C., Ma, K., ... & Gu, X. (2024). Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators. Frontiers in Plant Science, 15, 1354913. https://doi.org/10.3389/fpls.2024.1354913
  • Tabari, H., Kisi, O., Ezani, A., & Talaee, P. H. (2012). SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444, 78-89. https://doi.org/10.1016/j.jhydrol.2012.04.007
  • Taheri, M., Bigdeli, M., Imanian, H., & Mohammadian, A. (2025). An Overview of Evapotranspiration Estimation Models Utilizing Artificial Intelligence. Water, 17(9), 1384. https://doi.org/10.3390/w17091384
  • Tang, D., Feng, Y., Gong, D., Hao, W., & Cui, N. (2018). Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Computers and electronics in agriculture, 152, 375-384. https://doi.org/10.1016/j.compag.2018.07.029
  • Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V. P., ... & Bin Ahmad, B. (2018). New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water, 10(9), 1210. https://doi.org/10.3390/w10091210
  • Tikhamarine, Y., Malik, A., Souag-Gamane, D., & Kisi, O. (2020). Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research, 27, 30001-30019. https://doi.org/10.1007/s11356-020-08792-3
  • TSMS. (2025). Turkish State Meteorological Service, climate data of long term season. Retrieved March 14, 2025, from https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx
  • Turhan, A., Kuscu, H., & Asık, B. B. (2022). The influence of irrigation strategies on tomato fruit yield and leaf nutrient contents. Gesunde pflanzen, 74(4), 1021-1027. https://doi.org/10.1007/s10343-022-00678-3
  • Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P., Kuglitsch, F. G., ... & Ziv, B. (2012). Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes.
  • Usta, S. (2024). AutoCAD Yazılımı Kullanılarak Alansal ve Zamansal Bazlı İklim Sınıfı ve Referans Evapotranspirasyon Haritalarının Oluşturulması–Doğu Anadolu Bölgesi, Türkiye Örneği. Turkish Journal of Agriculture-Food Science and Technology, 12(7), 1213-1224. https://doi.org/10.24925/turjaf.v12i7.1213-1224.6689
  • Valipour, M. (2015). Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Archives of Agronomy and Soil Science, 61(2), 239-255. https://doi.org/10.1080/03650340.2014.925107
  • Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123
  • Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. https://doi.org/10.1111/ina.12580
  • Wu, L., Peng, Y., Fan, J., & Wang, Y. (2019). Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50(6), 1730-1750. https://doi.org/10.2166/nh.2019.060
  • Wu, T., Zhang, W., Jiao, X., Guo, W., & Hamoud, Y. A. (2020). Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables. PLoS One, 15(6), e0235324. https://doi.org/10.1371/journal.pone.0235324
  • Yamaç, S. S., & Todorovic, M. (2020). Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management, 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875
  • Yong, S. L. S., Ng, J. L., Huang, Y. F., & Ang, C. K. (2023). Estimation of reference crop evapotranspiration with three different machine learning models and limited meteorological variables. Agronomy, 13(4), 1048. https://doi.org/10.3390/agronomy13041048
  • Zhang, J., Ding, Y., Zhu, L., Wan, Y., Chai, M., & Ding, P. (2025). Estimating and forecasting daily reference crop evapotranspiration in China with temperature-driven deep learning models. Agricultural Water Management, 307, 109268. https://doi.org/10.1016/j.agwat.2024.109268
  • Zhao, Y., Dong, H., Huang, W., He, S., & Zhang, C. (2024). Seamless terrestrial evapotranspiration estimation by machine learning models across the Contiguous United States. Ecological Indicators, 165, 112203. https://doi.org/10.1016/j.ecolind.2024.11
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımsal Su Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Ali Kaan Yetik 0000-0003-1372-8407

Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 29 Ağustos 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 3

Kaynak Göster

APA Yetik, A. K. (2025). Machine learning-based estimation of daily ETo under limited meteorological data. Journal of Agricultural Faculty of Gaziosmanpaşa University, 42(3), 250-261. https://doi.org/10.55507/gopzfd.1709027