Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulama Suyu Tuzluluğunun Hıyarın Verim, Meyve Özellikleri ve Su Kullanım Etkinliği Üzerine Etkisi

Yıl 2015, , 29 - 38, 18.01.2016
https://doi.org/10.13002/jafag833

Öz

Bu çalışmada, hıyarın verim ve meyve özellikleri üzerine farklı sulama suyu tuzluluk düzeylerinin [0.3 (kontrol), 1.7, 2.7, 3.7, 4.7, 5.7 ve 6.7 dS m-1] etkileri değerlendirilmiştir. Araştırma, tesadüf parselleri deneme desenine göre altı tekrarlamalı olarak yürütülmüştür. Bitkiler, sera içine yerleştirilmiş varillerde ve her tekerrürde 1 bitki olacak biçimde yetiştirilmiştir. Araştırma sonuçlarına göre, sulama suyu tuzluluğu arttıkça meyve verimi azalmıştır. Sulama suyu ve toprak tuzluluğu eşik değerleri sırasıyla 1.47 ve 2.11 dS m−1 olarak saptanmıştır. Bu sonuç, söz konusu eşik değerlerinin üzerinde hıyar veriminde azalma olabileceğini göstermektedir. Meyve ağırlığı 1.7 dS m−1, meyve çapı, boyu ve su içeriği ise 2.7 dS m−1’e kadar sulama suyu tuzluluğundan etkilenmemiş, ancak bu değerlerin üzerinde artan tuzluluk söz konusu meyve özelliklerini azaltmıştır. Tuzluluk düzeyi 3.7 dS m-1’e kadar arttıkça suda çözünür kuru madde artmış ancak daha yüksek tuzluluk düzeylerinde azalmıştır. Toprak tuzluluğu ile bitki su tüketimi arasında negatif doğrusal bir ilişki saptanmıştır. Hem su kullanım hem de sulama suyu kullanım etkinliğinin en yüksek değerleri, 0.3 ve 1.7 dS m-1’lik tuzluluktan elde edilmiştir. Elde edilen sonuçlara göre, hıyar bitkisi 1.47 dS m-1 sulama suyu tuzluluğu kullanılarak güvenle yetiştirilebilir.

Kaynakça

  • Adams P, Serra G, Tognoni F and Leoni S (1995). Nutrition of greenhouse vegetables in NFT and hydroponics systems. Horticulturae, 361, 245-257.
  • Al-Harbi AR (1995). Growth and nutrient composition of tomato and cucumber seedlings as affected by sodium chloride salinity and supplemental by sodium chloride salinity and supplemental calcium. Journal of Plant Nutrition, 18(7), 1403-1416.
  • Al-Harbi AR (2001). Effect of hydrophone polymers and water quality on cucumber (cucumis sativus L.) growth. Alex. Sci. Exchange, 22, 15-24.
  • Alsadon AA, Wahb-allah MA and Khalil SO (2004). Growth, yield and quality of three greenhouse cucumber cultivars in relation to type of water applied at different stages of plant growth. International Conf. on Water Resources & Arid Environment.
  • Ayas S and Demirtaş Ç (2009). Deficit irrigation effects on cucumber (Cucumis sativus L. Maraton) yield in unheated greenhouse condition. Journal of Food, Agri. and Environ., 7(3-4), 645-649.
  • Ayers RS and Westcot DW (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No: 29, Rev. 1, FAO, Rome, Italy.
  • Ayyıldız M (1990). Sulama suyu kalitesi ve tuzluluk problemleri. Ankara Üniversitesi Ziraat Fakültesi Kültürteknik Bölümü, Ankara Üniv. Ziraat Fak. Yayınları: 1196, Ders Kitabı: 344, Ankara, 282s.
  • Campos CAB, Fernandes PD, Gheyi HR, Blanco FF, Goncalves CB and Campos SAF (2006). Yield and fruit quality of industrial tomato under saline irrigation. Sci. Agric. (Piracicaba, Braz.), 63, 146–152.
  • Ciobanu I and Sumalan R (2009). The effects of the salinity stress on the growing rates and physiological characteristics to the Lycopersicon esculentum specie. Bull UASVM Hortic., 66, 616–620.
  • Chartzoulakis KS (1991). Effects of saline irrigation water on germination, growth and yield of greenhouse cucumber. Acta Horticulturae, 287, 327-334.
  • Chartzoulakis KS (1994). Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae, 59(1), 27-35.
  • Chartzoulakis KS, Therios IN, Misopolinos ND, Noitsakis BI (1995). Growth, ion content and photosynthetic performance of salt-stressed kiwifruit plants. Irrig. Sci., 16, 23-28.
  • Chartzoulakis K and Klapaki G (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic., 86, 247–260.
  • Cramer MD, Oberholzer JA, Combrink NJJ (2001). The effect of supplementation of root zone dissolved inorganic carbon on fruit yield and quality of tomatoes (cv ‘Daniela’) grown with salinity. Scientia Horticulturae, 89, 269-289.
  • De Pascale S, Maggio A and Barbieri G (2005). Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur. J. Agron., 23, 254–264.
  • Doorenbos and Kassam A H (1979). Yield response to water. Irrigation and Drainage Paper No: 33, Fao, Rome, 193p.
  • Dölarslan M ve Gül E (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 5(2), 56-59.
  • El-Shraiy AM, Mostafa MA, Zaghlool SA and Shehata SAM (2011). Alleviation of salt injury of cucumber plant by grafting onto salt tolerance rootstock. Australian Journal of Basic and Applied Sciences, 5(10), 1414-1423.
  • Epstein E, Nortlyn JD, Rush DW, Kingbury RW, Keller DB, Cunningeham GA, Wrona AF (1980). Saline Culture of Crops: A Genetic Approach. Sci., 210, 399-404.
  • Ergene A (1982). Toprak bilgisi. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No:267, Ders Kitapları Serisi No: 42, Erzurum.
  • Folegatti MV and Blanco FF (2000). Vegetative development of grafted cucumber plants irrigated with saline water. Scientia Agricola, 57, 451- 457.
  • Francois L E (1994). Yield and quality response of salt stressed Garlic. Hortscience, 29(11), 1314-1317.
  • Jones RW, Pike LM, Yourman LF (1989). Salinity influences cucumber growth and yield. J. Amer. Soc. Hort. Sci., 114, 547-551.
  • Kanber R (1997). Sulama. Ç. Ü. Zir. Fak. Genel Yayın no: 174, Ders Kitapları Yayın no: 52, Adana.
  • Kara T (2002). Irrigation scheduling to present soil salinization from a shallow water table. Acta Horticulture, 573, 139-151.
  • Karadavut U (1997). Tuz stresinin bitkiler üzerine etkileri. KÜ. Ziraat Fakültesi Dergisi, 2(l), 57-72.
  • Kere GM, Guo Q, Shen J, Xu J, Chen J (2013). Heritability and gene effects for salinity tolerance in cucumber (Cucumis sativus L.) estimated by generation mean analysis. Scientia Horticulturae, 159, 122-127.
  • Keutgen A and Pawelzik E (2007). Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem., 105, 1487-1494.
  • Lloyd J, Kriedmann PE, Aspinall D (1989). Comparative sensitivity of ‘Prior Lisbon’ lemon and ‘Valencia’ orange trees to foliar sodium and chloride concentrations. Plant Cell Environ., 12, 529-540.
  • Maas EV and Hoffman GJ (1977). Crop salt tolerance-current assessment. Journal of Irrigation and Drainage, ASCE: 115-134.
  • Maas EV (1986). Salt tolerance of plants. Appl. Agric. Res., 1, 12–26.
  • Mao X, Liu M, Wang X, Liu C, Hou Z, Shi J (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the north China plain. Agri. Water Manage., 61, 219-228.
  • Martinze V and Gerda A (1987). Effect of nitrogen fertilization under saline conditions on tomato and cucumber 1. Yield and fruit quality. Angles de Edafologia Agrobiologia, 46, 1397-1408.
  • Noshadi M, Fahandej S, Sepaskhah AR (2013). Effects of salinity and irrigation water management on soil and tomato in drip irrigation. International Journal of Plant Production, 7(2), 1735-8043.
  • Renault S, Croser C, Franklin JA and Zwiazek JJ (2001). Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil, 233, 261-268.
  • Sakamoto Y, Watanabe S, Nakashıma T, Okano K (1999). Effects of salinity at two ripening stages on the fruit quality of single-truss tomato grown in hydroponics. The Journal of Horticultural Science and Biotechnology, 74, 690-693.
  • Scholberg JY and Locascio S (1993). Growth response of snap bean and tomato as affected by salinity and irrigation method. HortScience, 34 (2), 259-264.
  • Shalhevet J, Heuer B and Meiri A (1983). Irrigation interval as a factor in the salt tolerance of eggplant. Irrig. Sci., 4, 83–93.
  • Sonneveld C and Van der Burg MM (1991). Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth. J. Agric. Sci., 294, 81-88.
  • Stepien P and Klobus G (2006). Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plant, 50, 610–616.
  • Stewart JI, Misra RD, Pruitt WO, Hagan RM (1975). Irrigating corn and sorghum with a deficient water supply. Trans. ASAE, 18, 270-280.
  • Şalk A, Arın L, Deveci M ve Polat S (2008). Özel sebzecilik. Namık Kemal Üniversitesi Ziraat Fakültesi, Tekirdağ, 448s.
  • Tigchelaar EC (1986). Tomato breeding. In: Basset M.J. (ed.) Breeding Vegetables Crops, Westport, USA, 135-170pp.
  • Tunçer N (2007). Patlıcanda tuza tolerans kalıtımı üzerine çalışmalar. AnkaraÜniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 68 s.
  • Turhan A, Kuscu H, Ozmen N, Demir AS (2014a). Farklı tuzluluk düzeylerinin sarımsakta (Allium sativum L.) verim ve bazı kalite özelliklerine etkisi. Journal of Agricultural Sciences, 20: 280-287.
  • Turhan A, Kuscu H, Ozmen N (2014b). Farklı tuzluluk düzeylerindeki sulama sularının pırasada verim ve bazı kalite parametrelerine etkisi. 10. Sebze Tarımı Sempozyumu, 2-4 Eylül 2014, Tekirdağ, 44 s. (Basımda).
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E (2008). Growth and evapotranspiration of okra (Abelmoschus esculentus L.) as influenced by salinity of irrigation water. Journal of Irrigation and Drainage Engineering, 134(2), 160-166.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010). Effects of salinity eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59, 203-2014.
  • Üzen N, Ünlü M, Eylen M (2010). Diyarbakır koşullarında yetiştirilen pamuğun farklı seviyelerindeki tuz stresine gösterdikleri tepkilerin incelenmesi. I. Ulusal Sulama ve Tarımsal Yapılar Sempozyumu. Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, 29 Mayıs, 27 s.
  • Vural H, Eşiyok D, Duman İ (2000). Kültür sebzeleri (Sebze yetiştirme). Ege Üniversitesi Basımevi, İzmir, 440s.
  • Yadav BR and Paliwal KV (1990). Response of cauliflower to nitrogen and phosphorus fertilization on irrigation with saline waters. Veg. Sci., 17, 1–6.
  • Yurtseven E (2000). Patlıcanda (Solunum melongena L.) su tüketimine tuzluluğun etkisi. Toprak Su Dergisi. Sayı: 2, Ankara.
  • Yurtseven E ve Baran HY (2000). Sulama suyu tuzluluğu ve su miktarlarının brokolide (Brassiva oleracea botrytis) verim ve mineral madde içeriğine etkisi. Turk. J. Agric. For., 24(2), 185-190.
  • Wang XJ (1998). Analysis of secondary salination in protected soils. Northern Horticulture, 3 (4), 12-13.
  • Zhu JK (2001). Plant salt tolerance. Trends Plant Sci., 6, 66-71.
  • Zong L, Tedeschi A, Xue X, Wang T, Menenti M, Huang C (2011). Effect of different irrigation water salinities on some yield and quality components of two field-grown Cucurbit species, Turk J. Agric. For., 35, 295-307.

Effect of Irrigation Water Salinity on Yield, Fruit Characteristics and Water Use Efficiency of Cucumber

Yıl 2015, , 29 - 38, 18.01.2016
https://doi.org/10.13002/jafag833

Öz

In this study, the effects of different irrigation water salinity levels [0.3, 1.7, 2.7, 3.7, 4.7, 5.7 and 6.7 dS m-1] on yield and fruit characteristics of cucumber were evaluated. Research was laid out in randomized parcel design with six replication and 1 plant in each replication on tanks formed in greenhouse. According to the results, increasing irrigation water salinity decreased the fruit yield. The values of salinity threshold for irrigation water and soil were determined as 1.47 and 2.11 dS m−1, respectively, implying that the yield of cucumber would decrease with increasing salinity above these levels. Fruit weight, and diameter, length and water content of fruit were not affected from irrigation water salinity up to 1.7 and 2.7 dS m−1, respectively, but increasing salinity above this value decreased these fruit characteristics. Increasing salinity up to 3.7 dS m-1 improved the soluble solids content, whereas higher salinity levels decreased it. A negatively linear correlation between soil salinity and evapotranspiration was observed. The highest values of both water use and irrigation water use efficiency were obtained from salinity of 0.3 and 1.7 dS m-1. The results revealed that cucumber can be grown satisfactorily using irrigation water salinity up to 1.47 dS m-1.

Kaynakça

  • Adams P, Serra G, Tognoni F and Leoni S (1995). Nutrition of greenhouse vegetables in NFT and hydroponics systems. Horticulturae, 361, 245-257.
  • Al-Harbi AR (1995). Growth and nutrient composition of tomato and cucumber seedlings as affected by sodium chloride salinity and supplemental by sodium chloride salinity and supplemental calcium. Journal of Plant Nutrition, 18(7), 1403-1416.
  • Al-Harbi AR (2001). Effect of hydrophone polymers and water quality on cucumber (cucumis sativus L.) growth. Alex. Sci. Exchange, 22, 15-24.
  • Alsadon AA, Wahb-allah MA and Khalil SO (2004). Growth, yield and quality of three greenhouse cucumber cultivars in relation to type of water applied at different stages of plant growth. International Conf. on Water Resources & Arid Environment.
  • Ayas S and Demirtaş Ç (2009). Deficit irrigation effects on cucumber (Cucumis sativus L. Maraton) yield in unheated greenhouse condition. Journal of Food, Agri. and Environ., 7(3-4), 645-649.
  • Ayers RS and Westcot DW (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No: 29, Rev. 1, FAO, Rome, Italy.
  • Ayyıldız M (1990). Sulama suyu kalitesi ve tuzluluk problemleri. Ankara Üniversitesi Ziraat Fakültesi Kültürteknik Bölümü, Ankara Üniv. Ziraat Fak. Yayınları: 1196, Ders Kitabı: 344, Ankara, 282s.
  • Campos CAB, Fernandes PD, Gheyi HR, Blanco FF, Goncalves CB and Campos SAF (2006). Yield and fruit quality of industrial tomato under saline irrigation. Sci. Agric. (Piracicaba, Braz.), 63, 146–152.
  • Ciobanu I and Sumalan R (2009). The effects of the salinity stress on the growing rates and physiological characteristics to the Lycopersicon esculentum specie. Bull UASVM Hortic., 66, 616–620.
  • Chartzoulakis KS (1991). Effects of saline irrigation water on germination, growth and yield of greenhouse cucumber. Acta Horticulturae, 287, 327-334.
  • Chartzoulakis KS (1994). Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae, 59(1), 27-35.
  • Chartzoulakis KS, Therios IN, Misopolinos ND, Noitsakis BI (1995). Growth, ion content and photosynthetic performance of salt-stressed kiwifruit plants. Irrig. Sci., 16, 23-28.
  • Chartzoulakis K and Klapaki G (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic., 86, 247–260.
  • Cramer MD, Oberholzer JA, Combrink NJJ (2001). The effect of supplementation of root zone dissolved inorganic carbon on fruit yield and quality of tomatoes (cv ‘Daniela’) grown with salinity. Scientia Horticulturae, 89, 269-289.
  • De Pascale S, Maggio A and Barbieri G (2005). Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur. J. Agron., 23, 254–264.
  • Doorenbos and Kassam A H (1979). Yield response to water. Irrigation and Drainage Paper No: 33, Fao, Rome, 193p.
  • Dölarslan M ve Gül E (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 5(2), 56-59.
  • El-Shraiy AM, Mostafa MA, Zaghlool SA and Shehata SAM (2011). Alleviation of salt injury of cucumber plant by grafting onto salt tolerance rootstock. Australian Journal of Basic and Applied Sciences, 5(10), 1414-1423.
  • Epstein E, Nortlyn JD, Rush DW, Kingbury RW, Keller DB, Cunningeham GA, Wrona AF (1980). Saline Culture of Crops: A Genetic Approach. Sci., 210, 399-404.
  • Ergene A (1982). Toprak bilgisi. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No:267, Ders Kitapları Serisi No: 42, Erzurum.
  • Folegatti MV and Blanco FF (2000). Vegetative development of grafted cucumber plants irrigated with saline water. Scientia Agricola, 57, 451- 457.
  • Francois L E (1994). Yield and quality response of salt stressed Garlic. Hortscience, 29(11), 1314-1317.
  • Jones RW, Pike LM, Yourman LF (1989). Salinity influences cucumber growth and yield. J. Amer. Soc. Hort. Sci., 114, 547-551.
  • Kanber R (1997). Sulama. Ç. Ü. Zir. Fak. Genel Yayın no: 174, Ders Kitapları Yayın no: 52, Adana.
  • Kara T (2002). Irrigation scheduling to present soil salinization from a shallow water table. Acta Horticulture, 573, 139-151.
  • Karadavut U (1997). Tuz stresinin bitkiler üzerine etkileri. KÜ. Ziraat Fakültesi Dergisi, 2(l), 57-72.
  • Kere GM, Guo Q, Shen J, Xu J, Chen J (2013). Heritability and gene effects for salinity tolerance in cucumber (Cucumis sativus L.) estimated by generation mean analysis. Scientia Horticulturae, 159, 122-127.
  • Keutgen A and Pawelzik E (2007). Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem., 105, 1487-1494.
  • Lloyd J, Kriedmann PE, Aspinall D (1989). Comparative sensitivity of ‘Prior Lisbon’ lemon and ‘Valencia’ orange trees to foliar sodium and chloride concentrations. Plant Cell Environ., 12, 529-540.
  • Maas EV and Hoffman GJ (1977). Crop salt tolerance-current assessment. Journal of Irrigation and Drainage, ASCE: 115-134.
  • Maas EV (1986). Salt tolerance of plants. Appl. Agric. Res., 1, 12–26.
  • Mao X, Liu M, Wang X, Liu C, Hou Z, Shi J (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the north China plain. Agri. Water Manage., 61, 219-228.
  • Martinze V and Gerda A (1987). Effect of nitrogen fertilization under saline conditions on tomato and cucumber 1. Yield and fruit quality. Angles de Edafologia Agrobiologia, 46, 1397-1408.
  • Noshadi M, Fahandej S, Sepaskhah AR (2013). Effects of salinity and irrigation water management on soil and tomato in drip irrigation. International Journal of Plant Production, 7(2), 1735-8043.
  • Renault S, Croser C, Franklin JA and Zwiazek JJ (2001). Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil, 233, 261-268.
  • Sakamoto Y, Watanabe S, Nakashıma T, Okano K (1999). Effects of salinity at two ripening stages on the fruit quality of single-truss tomato grown in hydroponics. The Journal of Horticultural Science and Biotechnology, 74, 690-693.
  • Scholberg JY and Locascio S (1993). Growth response of snap bean and tomato as affected by salinity and irrigation method. HortScience, 34 (2), 259-264.
  • Shalhevet J, Heuer B and Meiri A (1983). Irrigation interval as a factor in the salt tolerance of eggplant. Irrig. Sci., 4, 83–93.
  • Sonneveld C and Van der Burg MM (1991). Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth. J. Agric. Sci., 294, 81-88.
  • Stepien P and Klobus G (2006). Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plant, 50, 610–616.
  • Stewart JI, Misra RD, Pruitt WO, Hagan RM (1975). Irrigating corn and sorghum with a deficient water supply. Trans. ASAE, 18, 270-280.
  • Şalk A, Arın L, Deveci M ve Polat S (2008). Özel sebzecilik. Namık Kemal Üniversitesi Ziraat Fakültesi, Tekirdağ, 448s.
  • Tigchelaar EC (1986). Tomato breeding. In: Basset M.J. (ed.) Breeding Vegetables Crops, Westport, USA, 135-170pp.
  • Tunçer N (2007). Patlıcanda tuza tolerans kalıtımı üzerine çalışmalar. AnkaraÜniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 68 s.
  • Turhan A, Kuscu H, Ozmen N, Demir AS (2014a). Farklı tuzluluk düzeylerinin sarımsakta (Allium sativum L.) verim ve bazı kalite özelliklerine etkisi. Journal of Agricultural Sciences, 20: 280-287.
  • Turhan A, Kuscu H, Ozmen N (2014b). Farklı tuzluluk düzeylerindeki sulama sularının pırasada verim ve bazı kalite parametrelerine etkisi. 10. Sebze Tarımı Sempozyumu, 2-4 Eylül 2014, Tekirdağ, 44 s. (Basımda).
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E (2008). Growth and evapotranspiration of okra (Abelmoschus esculentus L.) as influenced by salinity of irrigation water. Journal of Irrigation and Drainage Engineering, 134(2), 160-166.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010). Effects of salinity eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59, 203-2014.
  • Üzen N, Ünlü M, Eylen M (2010). Diyarbakır koşullarında yetiştirilen pamuğun farklı seviyelerindeki tuz stresine gösterdikleri tepkilerin incelenmesi. I. Ulusal Sulama ve Tarımsal Yapılar Sempozyumu. Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, 29 Mayıs, 27 s.
  • Vural H, Eşiyok D, Duman İ (2000). Kültür sebzeleri (Sebze yetiştirme). Ege Üniversitesi Basımevi, İzmir, 440s.
  • Yadav BR and Paliwal KV (1990). Response of cauliflower to nitrogen and phosphorus fertilization on irrigation with saline waters. Veg. Sci., 17, 1–6.
  • Yurtseven E (2000). Patlıcanda (Solunum melongena L.) su tüketimine tuzluluğun etkisi. Toprak Su Dergisi. Sayı: 2, Ankara.
  • Yurtseven E ve Baran HY (2000). Sulama suyu tuzluluğu ve su miktarlarının brokolide (Brassiva oleracea botrytis) verim ve mineral madde içeriğine etkisi. Turk. J. Agric. For., 24(2), 185-190.
  • Wang XJ (1998). Analysis of secondary salination in protected soils. Northern Horticulture, 3 (4), 12-13.
  • Zhu JK (2001). Plant salt tolerance. Trends Plant Sci., 6, 66-71.
  • Zong L, Tedeschi A, Xue X, Wang T, Menenti M, Huang C (2011). Effect of different irrigation water salinities on some yield and quality components of two field-grown Cucurbit species, Turk J. Agric. For., 35, 295-307.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Turhan Bu kişi benim

Hayrettin Kuşçu Bu kişi benim

Ali Osman Demir Bu kişi benim

Yayımlanma Tarihi 18 Ocak 2016
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Turhan, A., Kuşçu, H., & Demir, A. O. (2016). Sulama Suyu Tuzluluğunun Hıyarın Verim, Meyve Özellikleri ve Su Kullanım Etkinliği Üzerine Etkisi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 32(3), 29-38. https://doi.org/10.13002/jafag833