Research Article
BibTex RIS Cite

The Class of Demi-Order Norm Continuous Operators

Year 2023, , 1693 - 1698, 01.12.2023
https://doi.org/10.35378/gujs.1098503

Abstract

In this paper, we introduce the class of demi-order norm continuous operator on a normed Riesz space. We study the relationship between order-to-norm continuous operator and demi-order norm continuous operator. We also investigate some properties of the class of demi-order norm continuous operator, and it is given a characterization of a normed Riesz space with order continuous norm by the term of the demi-order norm continuous operator.

References

  • [1] Petryshyn, W.V., “Construction of fixed points of demicompact mappings in Hilbert space”, Journal of Mathematical Analysis and Applications, 14(2): 276-284, (1966).
  • [2] Krichen, B., O’Regan, D., “Weakly demicompact linear operators and axiomatic measures of weak noncompactness”, Mathematica Slovaca, 69(6): 1403-1412, (2019).
  • [3] Benkhaled, H., Hajji, M., Jeribi, A., “On the class of Demi Dunford- Pettis Operators”, Rendiconti del Circolo Matematico di Palermo, Ser.2, 1-11, (2022).
  • [4] Benkhaled, H., Elleuch, A., Jeribi, A., “The class of order weakly demicompact operators”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A Matemáticas., 114(2): 1-8, (2020).
  • [5] Jalili, A., Haghnejad, K., Moghimi, M., “Order-to-topology continuous operators”, Positivity, 25(2): 1-10, (2021).
  • [6] Aliprantis, C.D., Burkinshaw, O., Positive Operators, 119, Berlin, (2006).
Year 2023, , 1693 - 1698, 01.12.2023
https://doi.org/10.35378/gujs.1098503

Abstract

References

  • [1] Petryshyn, W.V., “Construction of fixed points of demicompact mappings in Hilbert space”, Journal of Mathematical Analysis and Applications, 14(2): 276-284, (1966).
  • [2] Krichen, B., O’Regan, D., “Weakly demicompact linear operators and axiomatic measures of weak noncompactness”, Mathematica Slovaca, 69(6): 1403-1412, (2019).
  • [3] Benkhaled, H., Hajji, M., Jeribi, A., “On the class of Demi Dunford- Pettis Operators”, Rendiconti del Circolo Matematico di Palermo, Ser.2, 1-11, (2022).
  • [4] Benkhaled, H., Elleuch, A., Jeribi, A., “The class of order weakly demicompact operators”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A Matemáticas., 114(2): 1-8, (2020).
  • [5] Jalili, A., Haghnejad, K., Moghimi, M., “Order-to-topology continuous operators”, Positivity, 25(2): 1-10, (2021).
  • [6] Aliprantis, C.D., Burkinshaw, O., Positive Operators, 119, Berlin, (2006).
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Gül Sinem Keleş 0000-0001-5712-239X

Birol Altın 0000-0002-1085-809X

Publication Date December 1, 2023
Published in Issue Year 2023

Cite

APA Keleş, G. S., & Altın, B. (2023). The Class of Demi-Order Norm Continuous Operators. Gazi University Journal of Science, 36(4), 1693-1698. https://doi.org/10.35378/gujs.1098503
AMA Keleş GS, Altın B. The Class of Demi-Order Norm Continuous Operators. Gazi University Journal of Science. December 2023;36(4):1693-1698. doi:10.35378/gujs.1098503
Chicago Keleş, Gül Sinem, and Birol Altın. “The Class of Demi-Order Norm Continuous Operators”. Gazi University Journal of Science 36, no. 4 (December 2023): 1693-98. https://doi.org/10.35378/gujs.1098503.
EndNote Keleş GS, Altın B (December 1, 2023) The Class of Demi-Order Norm Continuous Operators. Gazi University Journal of Science 36 4 1693–1698.
IEEE G. S. Keleş and B. Altın, “The Class of Demi-Order Norm Continuous Operators”, Gazi University Journal of Science, vol. 36, no. 4, pp. 1693–1698, 2023, doi: 10.35378/gujs.1098503.
ISNAD Keleş, Gül Sinem - Altın, Birol. “The Class of Demi-Order Norm Continuous Operators”. Gazi University Journal of Science 36/4 (December 2023), 1693-1698. https://doi.org/10.35378/gujs.1098503.
JAMA Keleş GS, Altın B. The Class of Demi-Order Norm Continuous Operators. Gazi University Journal of Science. 2023;36:1693–1698.
MLA Keleş, Gül Sinem and Birol Altın. “The Class of Demi-Order Norm Continuous Operators”. Gazi University Journal of Science, vol. 36, no. 4, 2023, pp. 1693-8, doi:10.35378/gujs.1098503.
Vancouver Keleş GS, Altın B. The Class of Demi-Order Norm Continuous Operators. Gazi University Journal of Science. 2023;36(4):1693-8.