Research Article
BibTex RIS Cite

An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance

Year 2024, , 1838 - 1851, 01.12.2024
https://doi.org/10.35378/gujs.1417698

Abstract

Refrigerated display cabinets, which are widely used in supermarkets, are one of the parts of the cold chain. These refrigerators are used for both cold storage and frozen storage of products at specific temperature ranges by standards. In refrigerated display cabinets, the air refrigerated by the heat drawn by the evaporator is blown to the food products. Due to negative interactions with hot ambient air, open-type refrigerated display cabinets consume large amounts of electrical energy. Therefore, the refrigerated display cabinet must have high energy efficiency. Energy labeling was made mandatory for refrigerated display cabinets launched in 2021 and energy labeling was classified from A to G. With this application, refrigerators are classified according to their efficiency. The energy consumption values of the compressor, evaporator fan, condenser fan, PTC resistor, and lighting units that cause energy consumption in the refrigerator were determined, and an algorithm was developed to keep these parameters under control. With this algorithm, energy consumption data is presented and, possible problems are detected, and warnings are given for these problems. With this algorithm that warns the refrigerator when necessary, malfunctions that may occur in the refrigerating system will be prevented. With this remote monitoring method, which aims to check whether the refrigerated display cabinets' meet the energy consumption values specified by the manufacturer under actual operating conditions, the impact of the remote monitoring method on energy efficiency has been revealed, and it was concluded that it can contribute to operational efficiency by reducing energy costs and carbon emissions.

References

  • [1] Katırcıoğlu, F., Cingiz, Z., “Soğutma Sistemi Arızalarında Yüzey Sıcaklıklarının Kızılötesi Görüntüleme Yöntemi ile Değerlendirilmesi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1): 139-156, (2023).
  • [2] Janecke, A., Terrill, T. J., Rasmussen, B. P., “A Comparison of Static and Dynamic Fault Detection Techniques for Transcritical Refrigerating”, International Journal of Refrigerating, 80: 212-224, (2017).
  • [3] Taheri-Garavand, A., Ahmadi, H., Omid, M., Mohtasebi, S. S., Mollazade, K., Smith, A. J. R., Carlomagno, G. M., “An Intelligent Approach for Cooling Radiator Fault Diagnosis based on Infrared Thermal İmage Processing Technique”, Applied Thermal Engineering, 87: 434-443, (2015).
  • [4] Wang, Z., Wang, L., Liang, K., Tan, Y., “Enhanced Chiller Fault Detection Using Bayesian Network and Principal Component Analysis”, Applied Thermal Engineering, 141: 898-905, (2018).
  • [5] Bogdanovská, G., Molnar, V., Fedorko, G., “Failure Analysis of Condensing Units for Refrigerators with Refrigerant R134a, R404A”, International Journal of Refrigeration, 100: 208-219, (2019).
  • [6] Erdoğmuş, F. N., Öder, M., Ezber, A. B., Kalkan, O., “Soğutma Sistemleri Arızaları, Kontrol ve Yönetim Modellerinin İncelenmesi”, 3rd International Conference on Access to Recent Advances in Engineering and Digitalization (ARACONF 2023), 2(1): 68-80, (2013).
  • [7] Nasiri, A., Taheri-Garavand, A., Omid, M., Carlomagno, G. M., “Intelligent Fault Diagnosis of Cooling Radiator based on Deep Learning Analysis of Infrared Thermal Images”, Applied Thermal Engineering, 163: 114410, (2019).
  • [8] Aktaş, M., Aktaş, A., Bilgin, S. Erdoğmuş, F. N., Öder, M., “Soğutma Sistemlerinde Kondenser Yüzey Kirliliğinin Kontrol Edilmesine Yönelik Akıllı Fan Yönetim Algoritma Tasarımı”, 2. Başkent Uluslararası Multidisiplinler Çalışma Kongresi, 410-417, Ankara, (2022).
  • [9] Cavazzini, G., Benato, A., “Residential Buildings Heating and Cooling Systems: The Key Role of Monitoring Systems and Real-Time Analysis in the Detection of Failures and Management Strategy Optimization”, Processes, 11(5): 1365, (2023).
  • [10] Movahed, P., Taheri, S., Razban, A., “A Bi-Level Data-Driven Framework for Fault-Detection and Diagnosis of HVAC Systems”, Applied Energy, 339: 120948, (2023).
  • [11] Edwin, M., Sekhar, J. S., “Thermo-Economic Assessment of Hybrid Renewable Energy based Cooling System for Food Preservation in Hilly Terrain”, Renewable Energy, 87: 493-500, (2016).
  • [12] TS EN ISO 23953-2:2017 Soğutuculu Teşhir Dolapları-Bölüm 2: Sınıflandırma, Kurallar ve Deney Şartları.
  • [13] Uddin, K., Saha, B. B., “An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications”, Energies, 15(21): 8082, (2022).
  • [14] Commission Delegated Regulation (EU) 2019/2018 of March 11 2019 supplementing Regulation (EU) 2017/1369 of the European Parliament and of the Council with regard to energy labelling of refrigerating appliances with a direct sales function (Text with EEA relevance). (2019, March 11). Office Journal of the Europian Union (L 315). URL: http://data.europa.eu/eli/reg_del/2019/2018/oj. Access date: 20.11.2023
  • [15] Wu, X., Hu, S., Mo, S., “Carbon Footprint Model for Evaluating the Global Warming Impact of Food Transport Refrigerating Systems”, Journal of Cleaner Production, 54: 115-124, (2013).
  • [16] Internet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri”. URL: https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri. Access date: 27.12.2023
  • [17] Lin, Q., Zhang, L., Shi, Y., Meng, H., “Low-Cost Rapid-Installation Data Monitoring and Analysis System for Operating Status of Refrigeration Plant”, Journal of Building Engineering, 67: 106047, (2023).
  • [18] Momeni, M., Jani, S., Sohani, A., Jani, S., Rahpeyma, E., “A High-Resolution Daily Experimental Performance Evaluation of A Large-Scale Industrial Vapor-Compression Refrigeration System based on Real-Time IoT Data Monitoring Technology”, Sustainable Energy Technologies and Assessments, 47: 101427, (2021).
  • [19] Erten, S., Öder, M., Aktaş, M., Şevik, S., Şensoy, B., “Design and Experimental Analysis of Condensate Pan for Plug-In Refrigerated Display Cabinets: Improving Drying Efficiency”, Applied Thermal Engineering, 248: 123198, (2024).
Year 2024, , 1838 - 1851, 01.12.2024
https://doi.org/10.35378/gujs.1417698

Abstract

References

  • [1] Katırcıoğlu, F., Cingiz, Z., “Soğutma Sistemi Arızalarında Yüzey Sıcaklıklarının Kızılötesi Görüntüleme Yöntemi ile Değerlendirilmesi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1): 139-156, (2023).
  • [2] Janecke, A., Terrill, T. J., Rasmussen, B. P., “A Comparison of Static and Dynamic Fault Detection Techniques for Transcritical Refrigerating”, International Journal of Refrigerating, 80: 212-224, (2017).
  • [3] Taheri-Garavand, A., Ahmadi, H., Omid, M., Mohtasebi, S. S., Mollazade, K., Smith, A. J. R., Carlomagno, G. M., “An Intelligent Approach for Cooling Radiator Fault Diagnosis based on Infrared Thermal İmage Processing Technique”, Applied Thermal Engineering, 87: 434-443, (2015).
  • [4] Wang, Z., Wang, L., Liang, K., Tan, Y., “Enhanced Chiller Fault Detection Using Bayesian Network and Principal Component Analysis”, Applied Thermal Engineering, 141: 898-905, (2018).
  • [5] Bogdanovská, G., Molnar, V., Fedorko, G., “Failure Analysis of Condensing Units for Refrigerators with Refrigerant R134a, R404A”, International Journal of Refrigeration, 100: 208-219, (2019).
  • [6] Erdoğmuş, F. N., Öder, M., Ezber, A. B., Kalkan, O., “Soğutma Sistemleri Arızaları, Kontrol ve Yönetim Modellerinin İncelenmesi”, 3rd International Conference on Access to Recent Advances in Engineering and Digitalization (ARACONF 2023), 2(1): 68-80, (2013).
  • [7] Nasiri, A., Taheri-Garavand, A., Omid, M., Carlomagno, G. M., “Intelligent Fault Diagnosis of Cooling Radiator based on Deep Learning Analysis of Infrared Thermal Images”, Applied Thermal Engineering, 163: 114410, (2019).
  • [8] Aktaş, M., Aktaş, A., Bilgin, S. Erdoğmuş, F. N., Öder, M., “Soğutma Sistemlerinde Kondenser Yüzey Kirliliğinin Kontrol Edilmesine Yönelik Akıllı Fan Yönetim Algoritma Tasarımı”, 2. Başkent Uluslararası Multidisiplinler Çalışma Kongresi, 410-417, Ankara, (2022).
  • [9] Cavazzini, G., Benato, A., “Residential Buildings Heating and Cooling Systems: The Key Role of Monitoring Systems and Real-Time Analysis in the Detection of Failures and Management Strategy Optimization”, Processes, 11(5): 1365, (2023).
  • [10] Movahed, P., Taheri, S., Razban, A., “A Bi-Level Data-Driven Framework for Fault-Detection and Diagnosis of HVAC Systems”, Applied Energy, 339: 120948, (2023).
  • [11] Edwin, M., Sekhar, J. S., “Thermo-Economic Assessment of Hybrid Renewable Energy based Cooling System for Food Preservation in Hilly Terrain”, Renewable Energy, 87: 493-500, (2016).
  • [12] TS EN ISO 23953-2:2017 Soğutuculu Teşhir Dolapları-Bölüm 2: Sınıflandırma, Kurallar ve Deney Şartları.
  • [13] Uddin, K., Saha, B. B., “An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications”, Energies, 15(21): 8082, (2022).
  • [14] Commission Delegated Regulation (EU) 2019/2018 of March 11 2019 supplementing Regulation (EU) 2017/1369 of the European Parliament and of the Council with regard to energy labelling of refrigerating appliances with a direct sales function (Text with EEA relevance). (2019, March 11). Office Journal of the Europian Union (L 315). URL: http://data.europa.eu/eli/reg_del/2019/2018/oj. Access date: 20.11.2023
  • [15] Wu, X., Hu, S., Mo, S., “Carbon Footprint Model for Evaluating the Global Warming Impact of Food Transport Refrigerating Systems”, Journal of Cleaner Production, 54: 115-124, (2013).
  • [16] Internet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri”. URL: https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri. Access date: 27.12.2023
  • [17] Lin, Q., Zhang, L., Shi, Y., Meng, H., “Low-Cost Rapid-Installation Data Monitoring and Analysis System for Operating Status of Refrigeration Plant”, Journal of Building Engineering, 67: 106047, (2023).
  • [18] Momeni, M., Jani, S., Sohani, A., Jani, S., Rahpeyma, E., “A High-Resolution Daily Experimental Performance Evaluation of A Large-Scale Industrial Vapor-Compression Refrigeration System based on Real-Time IoT Data Monitoring Technology”, Sustainable Energy Technologies and Assessments, 47: 101427, (2021).
  • [19] Erten, S., Öder, M., Aktaş, M., Şevik, S., Şensoy, B., “Design and Experimental Analysis of Condensate Pan for Plug-In Refrigerated Display Cabinets: Improving Drying Efficiency”, Applied Thermal Engineering, 248: 123198, (2024).
There are 19 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Energy Systems Engineering
Authors

Yaren Güven 0000-0003-0732-4692

Ahmet Aktaş 0000-0003-1027-1579

Mustafa Aktaş 0000-0003-1187-5120

Süleyman Erten 0000-0002-7811-6148

Melis Öder 0000-0002-1894-1445

Early Pub Date June 12, 2024
Publication Date December 1, 2024
Submission Date January 11, 2024
Acceptance Date May 18, 2024
Published in Issue Year 2024

Cite

APA Güven, Y., Aktaş, A., Aktaş, M., Erten, S., et al. (2024). An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance. Gazi University Journal of Science, 37(4), 1838-1851. https://doi.org/10.35378/gujs.1417698
AMA Güven Y, Aktaş A, Aktaş M, Erten S, Öder M. An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance. Gazi University Journal of Science. December 2024;37(4):1838-1851. doi:10.35378/gujs.1417698
Chicago Güven, Yaren, Ahmet Aktaş, Mustafa Aktaş, Süleyman Erten, and Melis Öder. “An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance”. Gazi University Journal of Science 37, no. 4 (December 2024): 1838-51. https://doi.org/10.35378/gujs.1417698.
EndNote Güven Y, Aktaş A, Aktaş M, Erten S, Öder M (December 1, 2024) An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance. Gazi University Journal of Science 37 4 1838–1851.
IEEE Y. Güven, A. Aktaş, M. Aktaş, S. Erten, and M. Öder, “An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1838–1851, 2024, doi: 10.35378/gujs.1417698.
ISNAD Güven, Yaren et al. “An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance”. Gazi University Journal of Science 37/4 (December 2024), 1838-1851. https://doi.org/10.35378/gujs.1417698.
JAMA Güven Y, Aktaş A, Aktaş M, Erten S, Öder M. An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance. Gazi University Journal of Science. 2024;37:1838–1851.
MLA Güven, Yaren et al. “An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance”. Gazi University Journal of Science, vol. 37, no. 4, 2024, pp. 1838-51, doi:10.35378/gujs.1417698.
Vancouver Güven Y, Aktaş A, Aktaş M, Erten S, Öder M. An Example of Remote Monitoring for A Refrigerated Display Cabinet: Effects on Energy Performance. Gazi University Journal of Science. 2024;37(4):1838-51.