Research Article
BibTex RIS Cite
Year 2019, , 1123 - 1136, 01.12.2019
https://doi.org/10.35378/gujs.490523

Abstract

References

  • [1] Lugonja, N.M., Stanković, D.M., Spasić, S.D., Roglić, G. M., Manojlović, D. D., Vrvić, M. M. "Comparative Electrochemical Determination of Total Antioxidant Activity in Infant Formula with Breast Milk", Food Analytical Methods, 7: 337–344, (2014).
  • [2] Abdali, D., Samson, S.E., Grover, A. K. "How effective are antioxidant supplements in obesity and diabetes?", Medical Principle Practice, 24: 201–215, (2015).
  • [3] Dias, T. R., Alves, M. G., Tomas, G. D., Socorro, S., Silva, B. M., Oliveira, P. F., "White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea", Journal Agricultural Food Chemistry, 62: 608–617, (2014).
  • [4] Jurado-Coronel, J. C., Ávila-Rodriguez, M., Echeverria, V., Hidalgo, O. A., Gonzalez, J., Aliev, G., Barreto, G.E., "Implication of green tea as a possible therapeutic approach for parkinson disease", CNS Neurological Disorders Drug Targets, 15: 292—300, (2016).
  • [5] Đudarić, L., Fužinac-Smojver, A., Muhvić, D., Giacometti, J., "The role of polyphenols on bone metabolism in osteoporosis", Food Researck International, 77: 290–298, (2015).
  • [6] Fraga, C. G.; "Plant phenolics and human health : biochemistry, nutrition and pharmacologye", Wiley, (2009).
  • [7] L. A. de la Rosa, E., AlvarezParrilla, G. A. G.-A., "Fruit and vegetable phytochemicals – chemistry, nutritional value, and stability" Wiley-Blackwell, (2009).
  • [8] Blasco, A. J., Rogerio, M. C., González, M. C., Escarpa, A., “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal", Analytica Chimica Acta, 539: 237–244, (2005).
  • [9] Tarola, A. M., Van de Velde, F., Salvagni, L., Preti, R. "Determination of phenolic compounds in strawberries (fragaria ananassa duch) by high performance liquid chromatography with diode array detection", Food Analytical Methods, 6: 227–237, (2013).
  • [10] Bayram, B., Ozcelik, B., Schultheiss, G., Frank, J., Rimbach, G., "A validated method for the determination of selected phenolics in olive oil using high-performance liquid chromatography with coulometric electrochemical detection and a fused-core column", Food Chemistry, 138: 1663–1669, (2013).
  • [11] Nour, V., Trandafir, I., Cosmulescu, S. "HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves", Journal of Chromatographic Science, 51: 883–890, (2013).
  • [12] John, Y., Bowman, P. D., Kerwin, S. M., Stavchansky, S., "Development and validation of an LCMS method to determine the pharmacokinetic profiles of caffeic acid phenethyl amide and caffeic acid phenethyl ester in male Sprague–Dawley rats", Biomedical Chromatography, 28: 241–246, (2014).
  • [13] Kicel, A., Owczarek, A., Michel, P., Skalicka-Woźniak, K., Kiss, A. K., Olszewska, M. A., "Application of HPCCC, UHPLC-PDA-ESI-MS3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers", Industrial Crops and Products, 76: 86–94, (2015).
  • [14] Bourget, P., Amin, A., Vidal, F., Merlette, C., Lagarce, F., "Comparison of Raman spectroscopy vs. high performance liquid chromatography for quality control of complex therapeutic objects: Model of elastomeric portable pumps filled with a fluorouracil solution", Journal of Pharmaceutical Biomedical Analysis, 91: 176–184, (2014).[15] Kilmartin, P. A., Hsu, C. F., "Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry"., Food Chemistry, 82: 501–512, (2003).
  • [16] Barroso, M. F., Delerue-Matos, C., Oliveira, M. B. P. P., "Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor", Food Chemistry, 132: 1055–1062, (2012).
  • [17] Głód, B. K., Kiersztyn, I., Piszcz, P. "Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements", Journal of Electroanalytical Chemistry, 719: 24–29, (2014).
  • [18] Menezes Peixoto, C. R. de, Fraga, S., Rosa Justim, J. da, Silva Gomes, M., Gonçalves Carvalho, D., Jarenkow, J. A., Fernandes de Moura, N., "Voltammetric determination of total antioxidant capacity of Bunchosia glandulifera tree extracts", Journal of Electroanalytical Chemistry, 799: 519–524, (2017).
  • [19] David, I. G., Bizgan, A-M. C., Popa, D. E., Buleandra, M., Moldovan, Z., Badea, I. A., Tekiner, T. A., Basaga, H., Ciucu, A. A., "Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode", Food Chemistry, 173: 1059–1065, (2015).
  • [20] Demir, E., İnam, R., "Square wave voltammetric determination of fomesafen herbicide using modified nanostructure carbon paste electrode as a sensor and application to food samples", Food Analytical Methods, 10: 74-82, (2017).
  • [21] Demir, E., Inam, R., Ozkan, S. A., Uslu, B., "Electrochemical behavior of tadalafil on TiO2 nanoparticles–MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry", Journal of Solid State Electrochemistry, 18: 2709–2720, (2014).
  • [22] Ginja, T. J., Alfredina, V., Barrocas, D. C., Martins, T. D., "Electroanalytical Study of Macluraxanthone: A Natural Product with a Strong Antioxidant and Antimalarial Activity", Electroanalysis, 29: 2062–2070, (2017).
  • [23] Laviron, E., Roullier, L., Degrand, C., "A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112: 1-23, (1980).
  • [24] Laviron, E., "General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101: 19–28, (1979).
  • [25] Janeiro, P., Novak, I., Seruga, M., Oliveira-Brett, A. M., "Electroanalytical oxidation of p‐coumaric acid". Analytical Letters, 40: 3309-3321, (2007).

Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry

Year 2019, , 1123 - 1136, 01.12.2019
https://doi.org/10.35378/gujs.490523

Abstract

The
present work describes a convenient method for the sensitive and selective
pathway of total antioxidant capacity (TAC) in lemon, watermelon and
mango-pineapple cold teas by square wave adsorptive stripping voltammetry
(SWAdSV) that is major electroanalytical methods on a carbon paste electrode.
Anodic peak current of p-coumaric acid exhibited a well oxidation peak at 780
mV was used as a standard to evaluate TAC in tea samples. In addition, the very
well-resolved and reproducible anodic processes, such as accumulation time,
frequency, step potential etc. were optimized for the SWAdSV method. The
potential applicability of the proposed SWAdSV was illustrated in commercial
teas samples. SWAdSV proved to be a faster and easier method to calculate TAC
compared to other conventional methods. Furthermore, total antioxidant amounts
of commercially lemon, watermelon and mango-pineapple cold teas were found in
optimum condition as equivalent to a concentration of 2050±15mg/L, 705±10 mg/L
and 808±14 mg/L p-coumaric acid (n=3, 95% confidence level), respectively.

References

  • [1] Lugonja, N.M., Stanković, D.M., Spasić, S.D., Roglić, G. M., Manojlović, D. D., Vrvić, M. M. "Comparative Electrochemical Determination of Total Antioxidant Activity in Infant Formula with Breast Milk", Food Analytical Methods, 7: 337–344, (2014).
  • [2] Abdali, D., Samson, S.E., Grover, A. K. "How effective are antioxidant supplements in obesity and diabetes?", Medical Principle Practice, 24: 201–215, (2015).
  • [3] Dias, T. R., Alves, M. G., Tomas, G. D., Socorro, S., Silva, B. M., Oliveira, P. F., "White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea", Journal Agricultural Food Chemistry, 62: 608–617, (2014).
  • [4] Jurado-Coronel, J. C., Ávila-Rodriguez, M., Echeverria, V., Hidalgo, O. A., Gonzalez, J., Aliev, G., Barreto, G.E., "Implication of green tea as a possible therapeutic approach for parkinson disease", CNS Neurological Disorders Drug Targets, 15: 292—300, (2016).
  • [5] Đudarić, L., Fužinac-Smojver, A., Muhvić, D., Giacometti, J., "The role of polyphenols on bone metabolism in osteoporosis", Food Researck International, 77: 290–298, (2015).
  • [6] Fraga, C. G.; "Plant phenolics and human health : biochemistry, nutrition and pharmacologye", Wiley, (2009).
  • [7] L. A. de la Rosa, E., AlvarezParrilla, G. A. G.-A., "Fruit and vegetable phytochemicals – chemistry, nutritional value, and stability" Wiley-Blackwell, (2009).
  • [8] Blasco, A. J., Rogerio, M. C., González, M. C., Escarpa, A., “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal", Analytica Chimica Acta, 539: 237–244, (2005).
  • [9] Tarola, A. M., Van de Velde, F., Salvagni, L., Preti, R. "Determination of phenolic compounds in strawberries (fragaria ananassa duch) by high performance liquid chromatography with diode array detection", Food Analytical Methods, 6: 227–237, (2013).
  • [10] Bayram, B., Ozcelik, B., Schultheiss, G., Frank, J., Rimbach, G., "A validated method for the determination of selected phenolics in olive oil using high-performance liquid chromatography with coulometric electrochemical detection and a fused-core column", Food Chemistry, 138: 1663–1669, (2013).
  • [11] Nour, V., Trandafir, I., Cosmulescu, S. "HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves", Journal of Chromatographic Science, 51: 883–890, (2013).
  • [12] John, Y., Bowman, P. D., Kerwin, S. M., Stavchansky, S., "Development and validation of an LCMS method to determine the pharmacokinetic profiles of caffeic acid phenethyl amide and caffeic acid phenethyl ester in male Sprague–Dawley rats", Biomedical Chromatography, 28: 241–246, (2014).
  • [13] Kicel, A., Owczarek, A., Michel, P., Skalicka-Woźniak, K., Kiss, A. K., Olszewska, M. A., "Application of HPCCC, UHPLC-PDA-ESI-MS3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers", Industrial Crops and Products, 76: 86–94, (2015).
  • [14] Bourget, P., Amin, A., Vidal, F., Merlette, C., Lagarce, F., "Comparison of Raman spectroscopy vs. high performance liquid chromatography for quality control of complex therapeutic objects: Model of elastomeric portable pumps filled with a fluorouracil solution", Journal of Pharmaceutical Biomedical Analysis, 91: 176–184, (2014).[15] Kilmartin, P. A., Hsu, C. F., "Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry"., Food Chemistry, 82: 501–512, (2003).
  • [16] Barroso, M. F., Delerue-Matos, C., Oliveira, M. B. P. P., "Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor", Food Chemistry, 132: 1055–1062, (2012).
  • [17] Głód, B. K., Kiersztyn, I., Piszcz, P. "Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements", Journal of Electroanalytical Chemistry, 719: 24–29, (2014).
  • [18] Menezes Peixoto, C. R. de, Fraga, S., Rosa Justim, J. da, Silva Gomes, M., Gonçalves Carvalho, D., Jarenkow, J. A., Fernandes de Moura, N., "Voltammetric determination of total antioxidant capacity of Bunchosia glandulifera tree extracts", Journal of Electroanalytical Chemistry, 799: 519–524, (2017).
  • [19] David, I. G., Bizgan, A-M. C., Popa, D. E., Buleandra, M., Moldovan, Z., Badea, I. A., Tekiner, T. A., Basaga, H., Ciucu, A. A., "Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode", Food Chemistry, 173: 1059–1065, (2015).
  • [20] Demir, E., İnam, R., "Square wave voltammetric determination of fomesafen herbicide using modified nanostructure carbon paste electrode as a sensor and application to food samples", Food Analytical Methods, 10: 74-82, (2017).
  • [21] Demir, E., Inam, R., Ozkan, S. A., Uslu, B., "Electrochemical behavior of tadalafil on TiO2 nanoparticles–MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry", Journal of Solid State Electrochemistry, 18: 2709–2720, (2014).
  • [22] Ginja, T. J., Alfredina, V., Barrocas, D. C., Martins, T. D., "Electroanalytical Study of Macluraxanthone: A Natural Product with a Strong Antioxidant and Antimalarial Activity", Electroanalysis, 29: 2062–2070, (2017).
  • [23] Laviron, E., Roullier, L., Degrand, C., "A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112: 1-23, (1980).
  • [24] Laviron, E., "General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101: 19–28, (1979).
  • [25] Janeiro, P., Novak, I., Seruga, M., Oliveira-Brett, A. M., "Electroanalytical oxidation of p‐coumaric acid". Analytical Letters, 40: 3309-3321, (2007).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Ersin Demır 0000-0001-9180-0609

Publication Date December 1, 2019
Published in Issue Year 2019

Cite

APA Demır, E. (2019). Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science, 32(4), 1123-1136. https://doi.org/10.35378/gujs.490523
AMA Demır E. Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science. December 2019;32(4):1123-1136. doi:10.35378/gujs.490523
Chicago Demır, Ersin. “Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-Pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry”. Gazi University Journal of Science 32, no. 4 (December 2019): 1123-36. https://doi.org/10.35378/gujs.490523.
EndNote Demır E (December 1, 2019) Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science 32 4 1123–1136.
IEEE E. Demır, “Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry”, Gazi University Journal of Science, vol. 32, no. 4, pp. 1123–1136, 2019, doi: 10.35378/gujs.490523.
ISNAD Demır, Ersin. “Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-Pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry”. Gazi University Journal of Science 32/4 (December 2019), 1123-1136. https://doi.org/10.35378/gujs.490523.
JAMA Demır E. Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science. 2019;32:1123–1136.
MLA Demır, Ersin. “Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-Pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry”. Gazi University Journal of Science, vol. 32, no. 4, 2019, pp. 1123-36, doi:10.35378/gujs.490523.
Vancouver Demır E. Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science. 2019;32(4):1123-36.

Cited By