Research Article
BibTex RIS Cite
Year 2021, , 211 - 219, 01.03.2021
https://doi.org/10.35378/gujs.695460

Abstract

References

  • [1] Chen, B.Y., “When does the position vector of a space curve always lie in its rectifying plane?”, Amer. Math. Monthly, 110: 147-152, (2003).
  • [2] Chen, B.Y., “Topics in differential geometry associated with position vector fields on Euclidean submanifolds”, Arab Journal of Mathematical Sciences, 23: 1-17, (2017).
  • [3] İlarslan, K., Nesovic, E., Petrovic-Torgasev, M., “Some characterizations of rectifying curves in the Minkowski 3-space”, Novi Sad Journal of Mathematics, 33(2): 23-32, (2003).
  • [4] Monterde, J., “Salkowski curves revisited, A family of curves with constant curvature and non-constant torsion”, Computer Aided Geometric Design, 26: 271-278, (2009).
  • [5] Salkowski, E.E., “Zur transformation von raumkurven”, Mathematische Annalen, 66(4): 517-557, (1909).
  • [6] Yılmaz, B., Metin, Ş., Gök, İ. and Yaylı, Y., “Harmonic curvature functions of some special curves in Galilean 3-space”, Honam Mathematical Journal, 41(2): 301-309, (2019).
  • [7] Özdamar, E., Hacisalihoğlu, H.H., “A characterization of inclined curves in Euclidean n-space”, Communication de la facult´e des sciences de L'Universit´e d'Ankara, 24: 15-22, (1975).
  • [8] Oh, Y.M., Seo, Y.L., “A Curve Satisfying with constant ”, American Journal of Undergraduate Research, 2(12): 57-62, (2015).
  • [9] Do Carmo, M., “Differential geometry of curves and surfaces”, Prentice-Hall, Upper Saddle Riv. N.J., (1976).
  • [10] O'Neill, B., “Semi-Riemannian Geometry with Application to Relativity”, Academic Press, New York, (1983).

Polynomial Parametric Equations of Rectifying Salkowski Curves

Year 2021, , 211 - 219, 01.03.2021
https://doi.org/10.35378/gujs.695460

Abstract

The aim of the paper is to find polynomial parametric equations of rectifying Salkowski curves in Minkowski 3-space, via a serial approach. These curves are characterized by according to their curvature; in particular those curves with constant curvature functions and linear harmonic curvature functions are fully characterized. Then, the equations of the rectifying Salkowski curves are obtained as serial solutions of differential equations with third-order polynomial coefficients.

References

  • [1] Chen, B.Y., “When does the position vector of a space curve always lie in its rectifying plane?”, Amer. Math. Monthly, 110: 147-152, (2003).
  • [2] Chen, B.Y., “Topics in differential geometry associated with position vector fields on Euclidean submanifolds”, Arab Journal of Mathematical Sciences, 23: 1-17, (2017).
  • [3] İlarslan, K., Nesovic, E., Petrovic-Torgasev, M., “Some characterizations of rectifying curves in the Minkowski 3-space”, Novi Sad Journal of Mathematics, 33(2): 23-32, (2003).
  • [4] Monterde, J., “Salkowski curves revisited, A family of curves with constant curvature and non-constant torsion”, Computer Aided Geometric Design, 26: 271-278, (2009).
  • [5] Salkowski, E.E., “Zur transformation von raumkurven”, Mathematische Annalen, 66(4): 517-557, (1909).
  • [6] Yılmaz, B., Metin, Ş., Gök, İ. and Yaylı, Y., “Harmonic curvature functions of some special curves in Galilean 3-space”, Honam Mathematical Journal, 41(2): 301-309, (2019).
  • [7] Özdamar, E., Hacisalihoğlu, H.H., “A characterization of inclined curves in Euclidean n-space”, Communication de la facult´e des sciences de L'Universit´e d'Ankara, 24: 15-22, (1975).
  • [8] Oh, Y.M., Seo, Y.L., “A Curve Satisfying with constant ”, American Journal of Undergraduate Research, 2(12): 57-62, (2015).
  • [9] Do Carmo, M., “Differential geometry of curves and surfaces”, Prentice-Hall, Upper Saddle Riv. N.J., (1976).
  • [10] O'Neill, B., “Semi-Riemannian Geometry with Application to Relativity”, Academic Press, New York, (1983).
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Beyhan Yılmaz 0000-0002-5091-3487

İsmail Gök 0000-0001-8407-133X

Yusuf Yaylı 0000-0003-4398-3855

Publication Date March 1, 2021
Published in Issue Year 2021

Cite

APA Yılmaz, B., Gök, İ., & Yaylı, Y. (2021). Polynomial Parametric Equations of Rectifying Salkowski Curves. Gazi University Journal of Science, 34(1), 211-219. https://doi.org/10.35378/gujs.695460
AMA Yılmaz B, Gök İ, Yaylı Y. Polynomial Parametric Equations of Rectifying Salkowski Curves. Gazi University Journal of Science. March 2021;34(1):211-219. doi:10.35378/gujs.695460
Chicago Yılmaz, Beyhan, İsmail Gök, and Yusuf Yaylı. “Polynomial Parametric Equations of Rectifying Salkowski Curves”. Gazi University Journal of Science 34, no. 1 (March 2021): 211-19. https://doi.org/10.35378/gujs.695460.
EndNote Yılmaz B, Gök İ, Yaylı Y (March 1, 2021) Polynomial Parametric Equations of Rectifying Salkowski Curves. Gazi University Journal of Science 34 1 211–219.
IEEE B. Yılmaz, İ. Gök, and Y. Yaylı, “Polynomial Parametric Equations of Rectifying Salkowski Curves”, Gazi University Journal of Science, vol. 34, no. 1, pp. 211–219, 2021, doi: 10.35378/gujs.695460.
ISNAD Yılmaz, Beyhan et al. “Polynomial Parametric Equations of Rectifying Salkowski Curves”. Gazi University Journal of Science 34/1 (March 2021), 211-219. https://doi.org/10.35378/gujs.695460.
JAMA Yılmaz B, Gök İ, Yaylı Y. Polynomial Parametric Equations of Rectifying Salkowski Curves. Gazi University Journal of Science. 2021;34:211–219.
MLA Yılmaz, Beyhan et al. “Polynomial Parametric Equations of Rectifying Salkowski Curves”. Gazi University Journal of Science, vol. 34, no. 1, 2021, pp. 211-9, doi:10.35378/gujs.695460.
Vancouver Yılmaz B, Gök İ, Yaylı Y. Polynomial Parametric Equations of Rectifying Salkowski Curves. Gazi University Journal of Science. 2021;34(1):211-9.