Research Article
BibTex RIS Cite
Year 2021, , 562 - 577, 01.06.2021
https://doi.org/10.35378/gujs.766419

Abstract

References

  • [1] Harris, C. M., “The Pareto distribution as a queue service discipline”, Operations Research, 16(2): 307-313, (1968).
  • [2] Atkinson, A.B., Harrison, A.J., “Distribution of Personal Wealth in Britain Cambridge University Press”, Cambridge, (1978).
  • [3] Hassan, A.S., Al-Ghamdi, A.S., “Optimum step stress accelerated life testing for Lomax distribution”, Journal of Applied Sciences Research, 5: 2153–2164, (2009).
  • [4] Ghitany, M. E., Al-Awadhi, F. A., Alkhalfan, L. A., “Marshall–Olkin extended Lomax- distribution and its application to censored data”, Communications in Statistics, Theory and Methods, 36: 1855-1866, (2007).
  • [5] Zografos, K., Balakrishnan, N., “On families of beta-and generalized gamma-generated distributions and associated inference”, Statistical Methodology, 6(4): 344-362, (2009).
  • [6] Lemonte, A. J., Gauss M. C., “An extended Lomax distribution”, Statistics, 47(4): 800-816, (2013).
  • [7] Ibrahim, A.B., Moniem A., Hameed A., “Exponentiated Lomax distribution”, International Journal of Mathematical Education, 33(5): 1-7,( 2012).
  • [8] Hasan, M. R., Baizid, A. R., “Bayesian Estimation under Different loss Functions Using Gamma Prior for the Case of Exponential Distribution”, Journal of Scientific Research, 9(1): 67-78, (2017).
  • [9] Canavos, G. C., Taokas, C. P., “Bayesian estimation of life parameters in the Weibull distribution”, Operations Research, 21(3): 755-763, (1973).
  • [10] Guure, C. B., Ibrahim, N. A., Ahmed, A. O. M., “Bayesian estimation of two-parameter weibull distribution using extension of Jeffreys' prior information with three loss functions”, Mathematical Problems in Engineering, (2012).
  • [11] Okasha, H. M., “E-Bayesian estimation for the Lomax distribution based on type-II censored data”, Journal of the Egyptian Mathematical Society, 22(3): 489-495, (2014).
  • [12] Nasiri, P., Hosseini, S.,“Statistical inferences for Lomax distribution based on record values (Bayesian and classical)”, Journal of Modern Applied Statistical Methods, 11(1): 15, (2012).
  • [13] Jeffreys, H., “An invariant form for the prior probability in estimation problems”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007): 453-461, (1946).
  • [14] Berger, J. O. and Sun, D., "Bayesian analysis for the poly-Weibull distribution." Journal of the American Statistical Association, 88 (424): 1412-1418, (1993).
  • [15] Naji, Loaiy F., and Huda A. Rasheed. "Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted loss Function." Iraqi Journal of Science, 60(5): 1161-1171, (2019).
  • [16] Naji, L. F. and Rasheed, H. A., "Bayesian estimation for two parameters of Gamma distribution under precautionary loss function." Ibn AL-Haitham Journal For Pure and Applied Science, 32(1): 187-196, (2019).
  • [17] Ni, S. and Sun, D., "Intrinsic Bayesian estimation of linear time series models." Statistical Theory and Related Fields, 1(13), (2020).
  • [18] Annan, J. D., "Recent developments in Bayesian estimation of climate sensitivity." Current Climate Change Reports, 1(4), 263-267, (2015).
  • [19] Yadav, A. S., Singh, S. K. and Singh, U., "Bayesian estimation of R=P[Y<X] for inverse Lomax distribution under progressive type-II censoring scheme." International Journal of System Assurance Engineering and Management, 10(5), 905-917, (2019).
  • [20] Smith, R. L. and Naylor, J. C., "A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution." Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3),358-369, (1987).
  • [21] Almalki, S. J. and Nadarajah, S., "Modifications of the Weibull distribution: A review." Reliability Engineering & System Safety, 124, 32-55, (2014).
  • [22] El-Morshedy, M., El-Bassiouny, A. H., El-Gohary, A., “Exponentiated inverse flexible Weibull extension distribution”, J. Stat. Appl. Probability, 6(1): 169-83, (2017).

Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications

Year 2021, , 562 - 577, 01.06.2021
https://doi.org/10.35378/gujs.766419

Abstract

In engineering, it is usual to model the data so as to make a decision under the problem of uncertainty. Commonly, the data in engineering is skewed to the right, and the skewed distributions in statistics are the appropriate models for making a decision under the Bayesian paradigm. To model the lifetime of an electronic device, an engineer can use the Bayesian estimators to compute the effect of the evidence in increasing the probability for the lifetime of an electronic device by using the prior information. This study presents an estimation of the shape parameter of Lomax distribution under Uniform and Jeffery prior by adopting SELF, QELF, WSELF, and the PELF. The significance of various estimators is compared and presented in graphs using simulated data under the Bayesian paradigm. It was determined that under a uniform prior, Bayes estimator under weighted error loss function (BWEL) provides a better result than others. Under Jeffery prior, the precautionary error loss function (BPEL) leads to a better result than others. Moreover, an application to engineering is also presented for illustration purposes.

References

  • [1] Harris, C. M., “The Pareto distribution as a queue service discipline”, Operations Research, 16(2): 307-313, (1968).
  • [2] Atkinson, A.B., Harrison, A.J., “Distribution of Personal Wealth in Britain Cambridge University Press”, Cambridge, (1978).
  • [3] Hassan, A.S., Al-Ghamdi, A.S., “Optimum step stress accelerated life testing for Lomax distribution”, Journal of Applied Sciences Research, 5: 2153–2164, (2009).
  • [4] Ghitany, M. E., Al-Awadhi, F. A., Alkhalfan, L. A., “Marshall–Olkin extended Lomax- distribution and its application to censored data”, Communications in Statistics, Theory and Methods, 36: 1855-1866, (2007).
  • [5] Zografos, K., Balakrishnan, N., “On families of beta-and generalized gamma-generated distributions and associated inference”, Statistical Methodology, 6(4): 344-362, (2009).
  • [6] Lemonte, A. J., Gauss M. C., “An extended Lomax distribution”, Statistics, 47(4): 800-816, (2013).
  • [7] Ibrahim, A.B., Moniem A., Hameed A., “Exponentiated Lomax distribution”, International Journal of Mathematical Education, 33(5): 1-7,( 2012).
  • [8] Hasan, M. R., Baizid, A. R., “Bayesian Estimation under Different loss Functions Using Gamma Prior for the Case of Exponential Distribution”, Journal of Scientific Research, 9(1): 67-78, (2017).
  • [9] Canavos, G. C., Taokas, C. P., “Bayesian estimation of life parameters in the Weibull distribution”, Operations Research, 21(3): 755-763, (1973).
  • [10] Guure, C. B., Ibrahim, N. A., Ahmed, A. O. M., “Bayesian estimation of two-parameter weibull distribution using extension of Jeffreys' prior information with three loss functions”, Mathematical Problems in Engineering, (2012).
  • [11] Okasha, H. M., “E-Bayesian estimation for the Lomax distribution based on type-II censored data”, Journal of the Egyptian Mathematical Society, 22(3): 489-495, (2014).
  • [12] Nasiri, P., Hosseini, S.,“Statistical inferences for Lomax distribution based on record values (Bayesian and classical)”, Journal of Modern Applied Statistical Methods, 11(1): 15, (2012).
  • [13] Jeffreys, H., “An invariant form for the prior probability in estimation problems”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007): 453-461, (1946).
  • [14] Berger, J. O. and Sun, D., "Bayesian analysis for the poly-Weibull distribution." Journal of the American Statistical Association, 88 (424): 1412-1418, (1993).
  • [15] Naji, Loaiy F., and Huda A. Rasheed. "Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted loss Function." Iraqi Journal of Science, 60(5): 1161-1171, (2019).
  • [16] Naji, L. F. and Rasheed, H. A., "Bayesian estimation for two parameters of Gamma distribution under precautionary loss function." Ibn AL-Haitham Journal For Pure and Applied Science, 32(1): 187-196, (2019).
  • [17] Ni, S. and Sun, D., "Intrinsic Bayesian estimation of linear time series models." Statistical Theory and Related Fields, 1(13), (2020).
  • [18] Annan, J. D., "Recent developments in Bayesian estimation of climate sensitivity." Current Climate Change Reports, 1(4), 263-267, (2015).
  • [19] Yadav, A. S., Singh, S. K. and Singh, U., "Bayesian estimation of R=P[Y<X] for inverse Lomax distribution under progressive type-II censoring scheme." International Journal of System Assurance Engineering and Management, 10(5), 905-917, (2019).
  • [20] Smith, R. L. and Naylor, J. C., "A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution." Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3),358-369, (1987).
  • [21] Almalki, S. J. and Nadarajah, S., "Modifications of the Weibull distribution: A review." Reliability Engineering & System Safety, 124, 32-55, (2014).
  • [22] El-Morshedy, M., El-Bassiouny, A. H., El-Gohary, A., “Exponentiated inverse flexible Weibull extension distribution”, J. Stat. Appl. Probability, 6(1): 169-83, (2017).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Statistics
Authors

Muhammad Ijaz 0000-0003-1403-7093

Publication Date June 1, 2021
Published in Issue Year 2021

Cite

APA Ijaz, M. (2021). Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications. Gazi University Journal of Science, 34(2), 562-577. https://doi.org/10.35378/gujs.766419
AMA Ijaz M. Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications. Gazi University Journal of Science. June 2021;34(2):562-577. doi:10.35378/gujs.766419
Chicago Ijaz, Muhammad. “Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior With Engineering Applications”. Gazi University Journal of Science 34, no. 2 (June 2021): 562-77. https://doi.org/10.35378/gujs.766419.
EndNote Ijaz M (June 1, 2021) Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications. Gazi University Journal of Science 34 2 562–577.
IEEE M. Ijaz, “Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications”, Gazi University Journal of Science, vol. 34, no. 2, pp. 562–577, 2021, doi: 10.35378/gujs.766419.
ISNAD Ijaz, Muhammad. “Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior With Engineering Applications”. Gazi University Journal of Science 34/2 (June 2021), 562-577. https://doi.org/10.35378/gujs.766419.
JAMA Ijaz M. Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications. Gazi University Journal of Science. 2021;34:562–577.
MLA Ijaz, Muhammad. “Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior With Engineering Applications”. Gazi University Journal of Science, vol. 34, no. 2, 2021, pp. 562-77, doi:10.35378/gujs.766419.
Vancouver Ijaz M. Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications. Gazi University Journal of Science. 2021;34(2):562-77.