Research Article
BibTex RIS Cite
Year 2022, , 1652 - 1663, 01.12.2022
https://doi.org/10.35378/gujs.915127

Abstract

References

  • [1] Furukawa, S., Komatsu, T.,"Intermetallic Compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis", ACS Catalysis, 7: 735–765, (2017).
  • [2] Dasgupta, A., Rioux, R.M., "Intermetallics in catalysis: an exciting subset of multimetallic catalysts", Catalysis Today, 330: 2–15, (2019).
  • [3] Marakatti, V.S., Peter, S.C., "Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts", Progress in Solid State Chemistry, 52: 1–30, (2018).
  • [4] Rößner, L., Armbrüster, M., "Electrochemical energy conversion on intermetallic compounds a review", ACS Catalysis, 9: 2018–2062, (2019).
  • [5] Armbrüster, M., Schlögl, R., Grin, Y., "Intermetallic compounds in heterogeneous catalysis a quickly developing field", Science and Technology of Advanced Materials, 15: 034803, (2014).
  • [6] Armbrüster, M., "Intermetallic compounds in catalysis – a versatile class of materials meets interesting challenges", Science and Technology of Advanced Materials, 21:1, 303-322, (2020).
  • [7] Jain, E., Pagare, G., Dubey, S., and Sanyal, S. P., "Phonon and Thermodynamical Properties of CuSc: A DFT study", AIP Conference Proceedings, 1953: 110033, (2018).
  • [8] Huang, X., Xie, G., Liu, X., Fu, H., Shao, L., Hao, Z., "The influence of precipitation transformation on Young’s modulus and strengthening mechanism of a Cu–Be binary alloy", Materials Science & Engineering A, 772: 138592, (2020).
  • [9] Chou, M. Y., Lam Pui, K. and Marvin, L., “Ab initio calculation of the static structural properties of Be”, Cohen. Solid State Communucations, 42: 861-863, (1982).
  • [10] Chou, M. Y., Lam Pui, K. and Marvin, L., “Ab initio study of structural and electronic properties of beryllium”, Physical Review B, 28: 4179-4185, (1983).
  • [11] Rajagopalan, M., Sundareswari, M., “First-principles study of elastic properties of ScX (X= Ag, Cu, Pd, Ru and Rh) compounds”, AIP Conference Proceedings, Manipal, India, 1349: 801- 802, (2010).
  • [12] Liu, Y., Sundman, B., Du, Y., Wang, J., Liu, S., Ping Gong, W., and Zhang, C., “A stepwise thermodynamic modeling of the phase diagram for the Cu–Be system”, Journal of Materials Science, 53: 3756–3766, (2018).
  • [13] Ullah, H., Reshak, A. H., Inayat, K., Ali, R., Murtaza, G., At, S., Ud Din, H., Alahmed, Z., Sheraz, S., “Structural, elastic, optoelectronic and optical properties of CuX (X= F, Cl, Br, I): A DFT study”, Journal of Optoelectronics and Advanced Materials, 16: 1493 – 1502, (2014).
  • [14] Jain, E., Pagare, G. and Chouhan, S. S., “Full Potential Linearized Augmented Plane Wave (FP-LAPW) Study of Intermetallic Compound: BeCu”, International Journal of Advancement in Electronics and Computer Engineering, 3: 306-309, (2014).
  • [15] Kars Durukan, İ., Oztekin Ciftci, Y., "Theoretical Study of Structural, Elastic Anisotropy, Electronic, and Vibrational Propertıes of CuBe Compound", 1. Uluslararası 23 Nisan Multidisipliner Çalışmalar Kongresi, Ankara, 152-156, (2019).
  • [16] Kresse, G., Hafner, J., “Ab initio molecular dynamics for liquid metals”, Physical Review B, 47: 558, (1993).
  • [17] Kresse, G., Hafner, J., “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium”, Physical Review B, 49: 14251, (1994).
  • [18] Kresse, G., Furthmuller, J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science, 6: 15, (1996).
  • [19] Page, L., Saxe, P., “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress”, Physical Review B, 65: 104104, (2002).
  • [20] Mehl, M. J., Osburn, J. E., Papaconstantopoulos, D. A., Klein, B. M, “Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations”, Physical Review B, 41: 10311, (1990).
  • [21] Toga, A., Oba, F. and Tanaka, I., “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures”, Physical Review B, 78: 134106- 1-9, (2008).
  • [22] Shi, D. M., Wen, B., Melnik, R., Yao, S., Li, T., “First principles studies of Al-Ni intermetallic compounds”, Journal of Solid State Chemistry, 182: 2664-2669, (2009).
  • [23] Marmier, A., Lethbridge, Z. A. D., Walton, R. I., Smith, C.W., Parker, S.C., Evans, K.E., “ElAM: A computer program for the analysis and representation of anisotropic elastic properties”, Computer Physics Communications, 181: 2102, (2010).
  • [24] M Born and K Huang, Dynamical Theory of Crystal Lattices (Oxford: Clarendon), (1954).
  • [25] Evecen, M., Ciftci, Y. O., “Theoretical investigation of the electronic structure, elastic, dynamic properties of intermetallic compound NiBe under pressure”, The European Physical Journal B, 94: 1, (2021).
  • [26] Hill, R., “The Elastic Behaviour of a Crystalline Aggregate”, Proceedings of the Physical Society, Section A, 65: 349, (1952).
  • [27] Zhang, L., Wang, X. and Cheng, Z., “Electronic, magnetic, mechanical, half-metallic and highly dispersive zero-gap half-metallic properties of rare-earth-element-based quaternary Heusler compounds”, Journal of Alloys and Compounds, 718: 63, (2017).
  • [28] Chen, X. Q, Niu, H., Li, D., Li, Y., “Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses”, Intermetallics, 19: 1275, (2011).
  • [29] Kars Durukan, I., Oztekin Ciftci, Y., “Anisotropic Elastic, Electronic and Vibrational Properties of the Semiconductor AgScX (X = Ge, C) Compounds”, Journal of Electronic Materials, 49: 1849-1856, (2020).
  • [30] Pugh, S. F. “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, Philosophical Magazine, 45: 823–843, (1954).
  • [31] Ganeshan, S., Shang, S. L., Zhang, H., Wang, Y., Mantina, M., Liu, Z. K., “Elastic constants of binary Mg compounds from first-principles calculations”, Intermetallics, 17: 313– 318, (2009).
  • [32] Shinde, S. M., Gupta, S. D., Gupta, S. K., Jha, P.K., “Lattice dynamics and thermodynamical study of yttrium monochalcogenides”, Computational Materials Science, 92: 69–75, (2014).
  • [33] Pettifor, D. G., “Theoretical predictions of structure and related properties of intermetallics”, Materials Science and Technology, 8: 345, (1992).
  • [34] Mott, P. H., Dorgan, J. R. and Roland, C. M., “The bulk modulus and Poisson's ratio of “incompressible” materials”, Journal of Sound and Vibrations, 312: 572–575, (2008).
  • [35] Spoor, P., Maynard J., and Kortan, A., “Elastic Isotropy and Anisotropy in Quasicrystalline and Cubic AlCuLi”, Physical Review Letters, 75: 3462, (1995).
  • [36] Ranganathan, S. I., and Ostoja-Starzewski, M., “Universal Elastic Anisotropy Index”, Physical Review Letters, 101: 055504, (2008).
  • [37] Chung, D. and Buessem, W., “The Elastic Anisotropy of Crystals”, Journal of Applied Physics, 38: 2010, (1967).
  • [38] Simunek, A., Vackar, J., “Hardness of Covalent and Ionic Crystals: First-Principle Calculations”, Physical Review Letters, 96: 085501, (2006).
  • [39] Zhang, M., Lu, M., Du, Y., Gao, L., Lu, C., Liu, H., “Hardness of FeB4: Density functional theory investigation”, The Journal of Chemical Physics, 140: 174505, (2014).
  • [40] Kars Durukan, İ., Oztekin Ciftci, Y., “First-principles calculations of vibrational and optical properties of half-Heusler NaScSi”, Indian Journal of Physics, 94: 1-10, (2020).
  • [41] Vitos, L., Korzhavyi, P. A. and Johansson, B, “Stainless steel optimization from quantum mechanical calculations”, Nature Materials, 2: 25, (2003).
  • [42] Anderson, O. L., “A simplified method for calculating the debye temperature from elastic constants”, Journal of Physics and Chemistry of Solids, 24: 909, (1963).
  • [43] Schreiber, E., Anderson, O. L., Soga, N. Elastic Constants and Their Measurements 1st ed., McGraw-Hill, New York, (1973).
  • [44] Bioud, N., Kassali, K. and Bouarissa, N., “Thermodynamic Properties of Compressed CuX (X = Cl, Br) Compounds: Ab Initio Study”, Journal of Electronic Materials, 46(4): 2521-2528, (2017).
  • [45] Khandy, S. A., Gupta, D. C., “Understanding Ferromagnetic Phase Stability, Electronic and Transport Properties of BaPaO3 and BaNpO3 from Ab-Initio Calculations”, Journal of Electronic Materials, 46: 5531, (2018).
  • [46] Khandy, S. A., Gupta, D. C., “Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite”, Materials Chemistry and Physics, 198: 380, (2017).
  • [47] Bencherif, K., Yakoubi, A., Della, N., Abid, O. M., Khachai, H., Ahmed, R., Khenata, R. Omran, S.B., Gupta, S.K., Murtaza, G., “First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential”, Journal of Electronic Materials, 45: 3479-3490, (2016).
  • [48] Liu, X., Fan, H-Q., “Electronic structure, elasticity, Debye temperature and anisotropy of cubic WO3 from first-principles calculation”, Royal Society Open Science, 5: 171921, (2018).
  • [49] Kaderoglu, C., Surucu, G., Erkisi, A., “The Investigation of Electronic, Elastic and Vibrational Properties of an Interlanthanide Perovskite: PrYbO3”, Journal of Electronic Materials, 46: 10, (2017).
  • [50] Ledbetter, H., Migliori, A., “A general elastic-anisotropy measure”, Journal of Applied Physics, 100: 063516, (2006).
  • [51] Chang, J., Zhao, G. P., Zhou, X. L., Liu, K., Lu, L.Y., “Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study”, Journal of Applied Physics, 112: 083519, (2012).
  • [52] Kars Durukan, I., Ciftci, Y. O., “The Effect of Pressure on Elastic Anisotropy, Vibration and Optical Properties of a AgScSi Compound”, Journal of Electronic Materials, 48: 4050, (2019).
  • [53] Mulliken, R. S., “Electronic Population Analysis on LCAO–MO Molecular Wave Functions”, The Journal of Chemical Physics, 2: 1833, (1955).
  • [54] Tian, W., Chen, H., “Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation”, Scientific Reports, 6: 1-7, (2016).
  • [55] Togo, A., Tanaka, I., “First principles phonon calculations in materials science", Scripta Materialia, 108: 1-5, (2015).
  • [56] Moradi, M., Taheri, N. and Rostami, M., “Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds”, Physics Letters A, 382: 3004–3011, (2018).

DFT Analysis of Mechanical and Dynamic Properties of CuBe

Year 2022, , 1652 - 1663, 01.12.2022
https://doi.org/10.35378/gujs.915127

Abstract

In this study, we have presented a comprehensive theoretical calculation to analyze the mechanical, and dynamic properties of the CuBe with the Density Functional Theory (DFT). Hardness, plasticity, and Poisson’s ratio are calculated. The ductile nature of the compound was demonstrated by mechanical properties. Also, the melting temperature (Tm) of this material was 1581 ± 300 K. Debye temperature was found to be 489.17 K, estimated from the acoustic velocity. The anisotropy properties of CuBe were evaluated in three dimensions and the presence of anisotropy in all other forms was revealed, except for Linner compression. The charge density plots show that the bonds between Cu-Be are more ionic. As a final word, the absence of negative phonon frequencies of the CuBe intermetallic compound showed its dynamical stability.

References

  • [1] Furukawa, S., Komatsu, T.,"Intermetallic Compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis", ACS Catalysis, 7: 735–765, (2017).
  • [2] Dasgupta, A., Rioux, R.M., "Intermetallics in catalysis: an exciting subset of multimetallic catalysts", Catalysis Today, 330: 2–15, (2019).
  • [3] Marakatti, V.S., Peter, S.C., "Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts", Progress in Solid State Chemistry, 52: 1–30, (2018).
  • [4] Rößner, L., Armbrüster, M., "Electrochemical energy conversion on intermetallic compounds a review", ACS Catalysis, 9: 2018–2062, (2019).
  • [5] Armbrüster, M., Schlögl, R., Grin, Y., "Intermetallic compounds in heterogeneous catalysis a quickly developing field", Science and Technology of Advanced Materials, 15: 034803, (2014).
  • [6] Armbrüster, M., "Intermetallic compounds in catalysis – a versatile class of materials meets interesting challenges", Science and Technology of Advanced Materials, 21:1, 303-322, (2020).
  • [7] Jain, E., Pagare, G., Dubey, S., and Sanyal, S. P., "Phonon and Thermodynamical Properties of CuSc: A DFT study", AIP Conference Proceedings, 1953: 110033, (2018).
  • [8] Huang, X., Xie, G., Liu, X., Fu, H., Shao, L., Hao, Z., "The influence of precipitation transformation on Young’s modulus and strengthening mechanism of a Cu–Be binary alloy", Materials Science & Engineering A, 772: 138592, (2020).
  • [9] Chou, M. Y., Lam Pui, K. and Marvin, L., “Ab initio calculation of the static structural properties of Be”, Cohen. Solid State Communucations, 42: 861-863, (1982).
  • [10] Chou, M. Y., Lam Pui, K. and Marvin, L., “Ab initio study of structural and electronic properties of beryllium”, Physical Review B, 28: 4179-4185, (1983).
  • [11] Rajagopalan, M., Sundareswari, M., “First-principles study of elastic properties of ScX (X= Ag, Cu, Pd, Ru and Rh) compounds”, AIP Conference Proceedings, Manipal, India, 1349: 801- 802, (2010).
  • [12] Liu, Y., Sundman, B., Du, Y., Wang, J., Liu, S., Ping Gong, W., and Zhang, C., “A stepwise thermodynamic modeling of the phase diagram for the Cu–Be system”, Journal of Materials Science, 53: 3756–3766, (2018).
  • [13] Ullah, H., Reshak, A. H., Inayat, K., Ali, R., Murtaza, G., At, S., Ud Din, H., Alahmed, Z., Sheraz, S., “Structural, elastic, optoelectronic and optical properties of CuX (X= F, Cl, Br, I): A DFT study”, Journal of Optoelectronics and Advanced Materials, 16: 1493 – 1502, (2014).
  • [14] Jain, E., Pagare, G. and Chouhan, S. S., “Full Potential Linearized Augmented Plane Wave (FP-LAPW) Study of Intermetallic Compound: BeCu”, International Journal of Advancement in Electronics and Computer Engineering, 3: 306-309, (2014).
  • [15] Kars Durukan, İ., Oztekin Ciftci, Y., "Theoretical Study of Structural, Elastic Anisotropy, Electronic, and Vibrational Propertıes of CuBe Compound", 1. Uluslararası 23 Nisan Multidisipliner Çalışmalar Kongresi, Ankara, 152-156, (2019).
  • [16] Kresse, G., Hafner, J., “Ab initio molecular dynamics for liquid metals”, Physical Review B, 47: 558, (1993).
  • [17] Kresse, G., Hafner, J., “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium”, Physical Review B, 49: 14251, (1994).
  • [18] Kresse, G., Furthmuller, J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science, 6: 15, (1996).
  • [19] Page, L., Saxe, P., “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress”, Physical Review B, 65: 104104, (2002).
  • [20] Mehl, M. J., Osburn, J. E., Papaconstantopoulos, D. A., Klein, B. M, “Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations”, Physical Review B, 41: 10311, (1990).
  • [21] Toga, A., Oba, F. and Tanaka, I., “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures”, Physical Review B, 78: 134106- 1-9, (2008).
  • [22] Shi, D. M., Wen, B., Melnik, R., Yao, S., Li, T., “First principles studies of Al-Ni intermetallic compounds”, Journal of Solid State Chemistry, 182: 2664-2669, (2009).
  • [23] Marmier, A., Lethbridge, Z. A. D., Walton, R. I., Smith, C.W., Parker, S.C., Evans, K.E., “ElAM: A computer program for the analysis and representation of anisotropic elastic properties”, Computer Physics Communications, 181: 2102, (2010).
  • [24] M Born and K Huang, Dynamical Theory of Crystal Lattices (Oxford: Clarendon), (1954).
  • [25] Evecen, M., Ciftci, Y. O., “Theoretical investigation of the electronic structure, elastic, dynamic properties of intermetallic compound NiBe under pressure”, The European Physical Journal B, 94: 1, (2021).
  • [26] Hill, R., “The Elastic Behaviour of a Crystalline Aggregate”, Proceedings of the Physical Society, Section A, 65: 349, (1952).
  • [27] Zhang, L., Wang, X. and Cheng, Z., “Electronic, magnetic, mechanical, half-metallic and highly dispersive zero-gap half-metallic properties of rare-earth-element-based quaternary Heusler compounds”, Journal of Alloys and Compounds, 718: 63, (2017).
  • [28] Chen, X. Q, Niu, H., Li, D., Li, Y., “Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses”, Intermetallics, 19: 1275, (2011).
  • [29] Kars Durukan, I., Oztekin Ciftci, Y., “Anisotropic Elastic, Electronic and Vibrational Properties of the Semiconductor AgScX (X = Ge, C) Compounds”, Journal of Electronic Materials, 49: 1849-1856, (2020).
  • [30] Pugh, S. F. “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, Philosophical Magazine, 45: 823–843, (1954).
  • [31] Ganeshan, S., Shang, S. L., Zhang, H., Wang, Y., Mantina, M., Liu, Z. K., “Elastic constants of binary Mg compounds from first-principles calculations”, Intermetallics, 17: 313– 318, (2009).
  • [32] Shinde, S. M., Gupta, S. D., Gupta, S. K., Jha, P.K., “Lattice dynamics and thermodynamical study of yttrium monochalcogenides”, Computational Materials Science, 92: 69–75, (2014).
  • [33] Pettifor, D. G., “Theoretical predictions of structure and related properties of intermetallics”, Materials Science and Technology, 8: 345, (1992).
  • [34] Mott, P. H., Dorgan, J. R. and Roland, C. M., “The bulk modulus and Poisson's ratio of “incompressible” materials”, Journal of Sound and Vibrations, 312: 572–575, (2008).
  • [35] Spoor, P., Maynard J., and Kortan, A., “Elastic Isotropy and Anisotropy in Quasicrystalline and Cubic AlCuLi”, Physical Review Letters, 75: 3462, (1995).
  • [36] Ranganathan, S. I., and Ostoja-Starzewski, M., “Universal Elastic Anisotropy Index”, Physical Review Letters, 101: 055504, (2008).
  • [37] Chung, D. and Buessem, W., “The Elastic Anisotropy of Crystals”, Journal of Applied Physics, 38: 2010, (1967).
  • [38] Simunek, A., Vackar, J., “Hardness of Covalent and Ionic Crystals: First-Principle Calculations”, Physical Review Letters, 96: 085501, (2006).
  • [39] Zhang, M., Lu, M., Du, Y., Gao, L., Lu, C., Liu, H., “Hardness of FeB4: Density functional theory investigation”, The Journal of Chemical Physics, 140: 174505, (2014).
  • [40] Kars Durukan, İ., Oztekin Ciftci, Y., “First-principles calculations of vibrational and optical properties of half-Heusler NaScSi”, Indian Journal of Physics, 94: 1-10, (2020).
  • [41] Vitos, L., Korzhavyi, P. A. and Johansson, B, “Stainless steel optimization from quantum mechanical calculations”, Nature Materials, 2: 25, (2003).
  • [42] Anderson, O. L., “A simplified method for calculating the debye temperature from elastic constants”, Journal of Physics and Chemistry of Solids, 24: 909, (1963).
  • [43] Schreiber, E., Anderson, O. L., Soga, N. Elastic Constants and Their Measurements 1st ed., McGraw-Hill, New York, (1973).
  • [44] Bioud, N., Kassali, K. and Bouarissa, N., “Thermodynamic Properties of Compressed CuX (X = Cl, Br) Compounds: Ab Initio Study”, Journal of Electronic Materials, 46(4): 2521-2528, (2017).
  • [45] Khandy, S. A., Gupta, D. C., “Understanding Ferromagnetic Phase Stability, Electronic and Transport Properties of BaPaO3 and BaNpO3 from Ab-Initio Calculations”, Journal of Electronic Materials, 46: 5531, (2018).
  • [46] Khandy, S. A., Gupta, D. C., “Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite”, Materials Chemistry and Physics, 198: 380, (2017).
  • [47] Bencherif, K., Yakoubi, A., Della, N., Abid, O. M., Khachai, H., Ahmed, R., Khenata, R. Omran, S.B., Gupta, S.K., Murtaza, G., “First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential”, Journal of Electronic Materials, 45: 3479-3490, (2016).
  • [48] Liu, X., Fan, H-Q., “Electronic structure, elasticity, Debye temperature and anisotropy of cubic WO3 from first-principles calculation”, Royal Society Open Science, 5: 171921, (2018).
  • [49] Kaderoglu, C., Surucu, G., Erkisi, A., “The Investigation of Electronic, Elastic and Vibrational Properties of an Interlanthanide Perovskite: PrYbO3”, Journal of Electronic Materials, 46: 10, (2017).
  • [50] Ledbetter, H., Migliori, A., “A general elastic-anisotropy measure”, Journal of Applied Physics, 100: 063516, (2006).
  • [51] Chang, J., Zhao, G. P., Zhou, X. L., Liu, K., Lu, L.Y., “Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study”, Journal of Applied Physics, 112: 083519, (2012).
  • [52] Kars Durukan, I., Ciftci, Y. O., “The Effect of Pressure on Elastic Anisotropy, Vibration and Optical Properties of a AgScSi Compound”, Journal of Electronic Materials, 48: 4050, (2019).
  • [53] Mulliken, R. S., “Electronic Population Analysis on LCAO–MO Molecular Wave Functions”, The Journal of Chemical Physics, 2: 1833, (1955).
  • [54] Tian, W., Chen, H., “Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation”, Scientific Reports, 6: 1-7, (2016).
  • [55] Togo, A., Tanaka, I., “First principles phonon calculations in materials science", Scripta Materialia, 108: 1-5, (2015).
  • [56] Moradi, M., Taheri, N. and Rostami, M., “Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds”, Physics Letters A, 382: 3004–3011, (2018).
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

İlknur Kars Durukan 0000-0001-5697-0530

Yasemin Çiftci 0000-0003-1796-0270

Publication Date December 1, 2022
Published in Issue Year 2022

Cite

APA Kars Durukan, İ., & Çiftci, Y. (2022). DFT Analysis of Mechanical and Dynamic Properties of CuBe. Gazi University Journal of Science, 35(4), 1652-1663. https://doi.org/10.35378/gujs.915127
AMA Kars Durukan İ, Çiftci Y. DFT Analysis of Mechanical and Dynamic Properties of CuBe. Gazi University Journal of Science. December 2022;35(4):1652-1663. doi:10.35378/gujs.915127
Chicago Kars Durukan, İlknur, and Yasemin Çiftci. “DFT Analysis of Mechanical and Dynamic Properties of CuBe”. Gazi University Journal of Science 35, no. 4 (December 2022): 1652-63. https://doi.org/10.35378/gujs.915127.
EndNote Kars Durukan İ, Çiftci Y (December 1, 2022) DFT Analysis of Mechanical and Dynamic Properties of CuBe. Gazi University Journal of Science 35 4 1652–1663.
IEEE İ. Kars Durukan and Y. Çiftci, “DFT Analysis of Mechanical and Dynamic Properties of CuBe”, Gazi University Journal of Science, vol. 35, no. 4, pp. 1652–1663, 2022, doi: 10.35378/gujs.915127.
ISNAD Kars Durukan, İlknur - Çiftci, Yasemin. “DFT Analysis of Mechanical and Dynamic Properties of CuBe”. Gazi University Journal of Science 35/4 (December 2022), 1652-1663. https://doi.org/10.35378/gujs.915127.
JAMA Kars Durukan İ, Çiftci Y. DFT Analysis of Mechanical and Dynamic Properties of CuBe. Gazi University Journal of Science. 2022;35:1652–1663.
MLA Kars Durukan, İlknur and Yasemin Çiftci. “DFT Analysis of Mechanical and Dynamic Properties of CuBe”. Gazi University Journal of Science, vol. 35, no. 4, 2022, pp. 1652-63, doi:10.35378/gujs.915127.
Vancouver Kars Durukan İ, Çiftci Y. DFT Analysis of Mechanical and Dynamic Properties of CuBe. Gazi University Journal of Science. 2022;35(4):1652-63.