Review
BibTex RIS Cite

Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery

Year 2022, , 896 - 915, 01.09.2022
https://doi.org/10.35378/gujs.934901

Abstract

Today, with the increase of industrialization, the waste heat emitted by the industrial machines used has started to increase. Therefore, the energy efficiency of these devices also decreases. In addition, this waste heat remains a bad factor that plays a role in the world's climate change. Governments are implementing incentive policies to increase energy efficiency and reduce greenhouse gas emissions. Therefore, both scientists and engineers strive for a cleaner environment and energy. Thermoelectric generators (TEGs) are one of the devices that contribute to energy efficiency and sustainable energy production by ensuring the recovery of a certain part of the waste heat emitted by these machines to the environment. The TEGs have found traditional uses from the waste heat of microprocessors to the waste heat of stoves. However, their proliferation is limited by their efficiency less than 10% and their high purchasing costs. Academicians and engineers continue to work without slowing down to overcome these. The semiconductors with low thermal conductivity and high electrical conductivity are the main subjects studied in this field. With overcoming these difficulties, it is aimed to use thermoelectric generators in the future to convert the waste heat of almost all devices into electrical energy. Therefore, the main purpose of this study is to investigate the current innovations of TEGs and to determine the future trend. Among the main findings of this study, it is predicted that TEGs will be widely used in areas where there is a need for silent and maintenance-free energy in the future.

Thanks

The authors are grateful to the Department of Electrical and electronic Engineering, Islamic University for providing some facilities.

References

  • [1] Quan, R., Li, T., Yue, Y., Chang, Y., and Tan, B., “Experimental study on a TE generator for industrial waste heat recovery based on a hexagonal heat exchanger”, Energies, 13(12): 3137, (2020).
  • [2] Tahami, S. A., Gholikhani, M., and Dessouky, S., “TE energy harvesting system for roadway sustainability”, Transportation Research Record, 2674(2): 135–145, (2020).
  • [3] Saraereh, O. A., Alsaraira, A., Khan, I., and Choi, B. J., “A hybrid energy harvesting design for on-body Internet-of-Things (IoT) networks”, Sensors, 20(2): 407, (2020).
  • [4] Reddick, C., Sorin, M., Bonhivers, J. C., and Laperle, D., “Waste heat and renewable energy integration in buildings”, Energy and Buildings, 211: 109803, (2020).
  • [5] He, M., Wang, E., Zhang, Y., Zhang, W., Zhang, F., and Zhao, C., “Performance analysis of a multilayer TE generator for exhaust heat recovery of a heavy-duty diesel engine”, Applied Energy, 274: 115298, (2020).
  • [6] Leonard, M. D., Michaelides, E. E., and Michaelides, D. N., “Energy storage needs for the substitution of fossil fuel power plants with renewable”, Renewable Energy, 145: 951–962, (2020).
  • [7] Kim, H., You, H., Choi, K. S., and Han, S., “A study on interconnecting to the power grid fof new energy using the natural gas pressure”, Journal of Electrical Engineering & Technology, 15(1): 307–314, (2020).
  • [8] Araiz, M., Casi, Á., Catalán, L., Martínez, Á., and Astrain, D., “Prospects of waste-heat recovery from a real industry using TE generators: Economic and power output analysis”, Energy Conversion and Management, 205: 112376, (2020).
  • [9] Hussain, T., Li, X., Danish, M. H., Rehman, M. U., Zhang, J., Li, D., Chen, G., and Tang, G., “Realizing high TE performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te”, Nano Energy, 73: 104832, (2020).
  • [10] Chuang, F. C., Chang, C. L., Chow, Y. N., Shen, H. C., Wu, T. L., Chen, Y. C., Chiang, C. S., Liao, F. L., and Chen, Y. H., “Application of water tank employing smart sensor for thermal–electric energy conversion on vehicles”, Sensors and Materials, 32(1): 135–148, (2020).
  • [11] Ashraf, M., “A Maximum power-point tracking multiple-input thermal energy harvesting module”, International Journal of Electronics and Communications, 121: 153231, (2020).
  • [12] Kang, M., and Yeatman, E. M., “Coupling of piezo-and pyro-electric effects in miniature thermal energy harvesters”, Applied Energy, 262: 114496, (2020).
  • [13] Weng, M., and Geng, C., “Research on computer centralized management system based on thermal energy data acquisition and display”, Thermal Science, 24(5): 3299–3307, (2020).
  • [14] Cong, P., Zhou, J., Li, L., Cao, K., Wei, T., and Li, K., “A Survey of hierarchical energy optimization for mobile edge computing: A perspective from end devices to the cloud”, ACM Computing Surveys, 53(2): 38, (2020).
  • [15] Huang, L., Lin, S., Xu, Z., Zhou, H., Duan, J., Hu, B., and Zhou, J., “Fiber-based energy conversion devices for human-body energy harvesting”, Advanced Materials, 32(5): 1902034, (2020).
  • [16] Nozariasbmarz, A., Suarez, F., Dycus, J. H., Cabral, M. J., LeBeau, J. M., Öztürk, M. C., and Vashaee, D., “TE generators for wearable body heat harvesting: material and device concurrent optimization”, Nano Energy, 67: 104265, (2020).
  • [17] Yang, S. M., Wang, J. Y., and Chen, M. D., “On the improved performance of TE generators with low dimensional polysilicon-germanium thermocouples by BiCMOS process”, Sensors and Actuators A: Physical, 306: 111924, (2020).
  • [18] Jia, X., and Guo, Q., “Design study of bismuth-telluride-based TE generators based on TE and mechanical performance”, Energy, 190: 116226, (2020).
  • [19] Zhang, X., Yang, B., Yu, T., and Jiang, L., “Dynamic Surrogate Model based optimization for MPPT of centralized thermoelectric generation systems under heterogeneous temperature difference”, IEEE Transactions on Energy Conversion, 35(2): 966–976, (2020).
  • [20] Sabry, M., Lashin, A., and Al Turkestani, M., “Experimental and simulation investigations of CPV/TEG hybrid system”, Journal of King Saud University-Science, 33(2): 101321, (2021).
  • [21] Narjis, A., Liang, C. T., El Aakib, H., Tchenka, A., and Outzourhit, A., “Design optimization for maximized thermoelectric generator performance”, Journal of Electronic Materials, 49(1): 306–310, (2020).
  • [22] Hegde, G. S., Prabhu, A. N., Rao, A., and Chattopadhyay, M. K., “Enhancement in thermoelectric figure of merit of bismuth telluride system due to tin and selenium co-doping”, Materials Science in Semiconductor Processing, 127: 105645, (2021).
  • [23] Yanagisawa, R., Tsujii, N., Takao, M. O. R. I., Ruther, P., Paul, O., and Nomura, M., “Nanostructured planar-type uni-leg Si TE generators”, Applied Physics Express, 13(9): 095001, (2020).
  • [24] Lindorf, M., Mazzio, K. A., Pflaum, J., Nielsch, K., Brütting, W., and Albrecht, M., “Organic-based thermoelectrics”, Journal of Materials Chemistry A, 8(1): 7495–7507, (2020).
  • [25] Zhao, W., Ding, J., Zou, Y., Di, C. A., and Zhu, D., “Chemical doping of organic semiconductors for thermoelectric applications”, Chemical Society Reviews, 49(20): 7210–7228, (2020).
  • [26] Xu, Q., Qu, S., Ming, C., Qiu, P., Yao, Q., Zhu, C., Wei, T. R., He, J., Shi, X., and Chen, L., “Conformal organic–inorganic semiconductor composites for flexible thermoelectrics”, Energy & Environmental Science, 13(2): 511–518, (2020).
  • [27] Du, Y., Xu, J., Paul, B., and Eklund, P., “Flexible thermoelectric materials and devices”, Applied Materials Today, 12: 366–388, (2018).
  • [28] Russ, B., Robb, M. J., Brunetti, F. G., Miller, P. L., Perry, E. E., Patel, S. N., Ho, V., Chang, W. B., Urban, J. J., Chabinyc, M. L., Hawker, C. J., and Segalman, A., “Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design”, Advanced Materials, 26(21): 3473–3477, (2014).
  • [29] Wang, H., and Yu, C., “Organic thermoelectrics: materials preparation, performance optimization, and device integration”, Joule, 3(1): 53–80, (2019).
  • [30] Mamur, H., Dilmac, O. F., and Bhuiyan, M. R. A., “A review on performance evaluation of Bi2Te3-based and some other TE nanostructure materials”, Current Nanoscience, 17(3): 423–446, (2021).
  • [31] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost–effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering, 39(3): 23–33, (2020).
  • [32] Mamur, H., Bhuiyan, M. R. A., Korkmaz, F., and Nil, M., “A review on bismuth telluride (Bi2Te3) nanostructure for TE applications”, Renewable & Sustainable Energy Reviews, 82: 4159–4169, (2018).
  • [33] Mamur, H., and Bhuiyan, M. R. A., “Bismuth telluride (Bi2Te3) nanostructure for TE applications”, International Scientific and Vocational Studies Journal, 3(1): 1–7, (2019).
  • [34] Mamur, H., Dilmac, O. F., Korucu, H., and Bhuiyan, M. R. A., “Cost–effective chemical solution synthesis of bismuth telluride nanostructure for TE applications”, Micro & Nano Letters, 13(8): 1117–1120, (2018).
  • [35] Bhuiyan, M. R. A., and Mamur, H., “Review of the bismuth telluride (Bi2Te3) nanoparticle: growth and characterization”, International Journal Energy Applications and Technologies, 3(2): 27–31, (2016).
  • [36] Bhuiyan, M. R. A., and Mamur, H., “Synthesis and characterization of Se doped Bi2Te3 nanocrystalline materials”, Karaelmas Science and Engineering Journal, 9(1): 11–21, (2019).
  • [37] Akter, M., Khan, M. N. I., Mamur, H., and Bhuiyan, M.R.A., “Synthesis and characterisation of CdSe QDs by using a chemical solution route”, Micro & Nano Letters, 15(5): 287–290, (2020).
  • [38] Bhuiyan, M. R. A., Miah, M. A. H., and Begum, J., “Substrate temperature effect on the structural and optical properties of ZnSe thin films”, Journal of Bangladesh Academy Sciences, 36(2): 233–240, (2012).
  • [39] Bhuiyan, M. R. A., Al Azad, M. A., and Hasan, S. M., “Annealing effect on structural and electrical properties of AgGaSe2 thin films”, Indian Journal Pure & Applied Physics, 49: 180–185, (2011).
  • [40] Bhuiyan, M. R. A., Saha, D. K., and Hasan, S.M., “Structural and electrical properties of polycrystalline AgxGa2-xSe2 (0.4≤ x≤ 1.6) thin films”, Indian Journal Pure & Applied Physics, 47: 787–792, (2009).
  • [41] Bhuiyan, M. R. A., Rahman, M. K., and Firoz Hasan, S. M., “Valence-band characterization of AgGaSe2 thin films”, Journal of Physics D: Applied Physics, 41(23): 235108, (2008).
  • [42] Bhuiyan, M. R. A., and Firoz Hasan, S. M., “Optical properties of polycrystalline AgxGa2−xSe2 (0.4≤x≤1.6) thin films”, Solar Energy Materials and Solar Cells, 91(2-3): 148–152, (2007).
  • [43] Bhuiyan, M. R. A., and Firoz Hasan, S. M., “Optical absorption characteristics of polycrystalline AgGaSe2 thin films”, Journal of Physics D: Applied Physics, 39(23): 4935, (2006).
  • [44] Amatya, R., and Ram, R.J., “Solar thermoelectric generator for micropower applications”, Journal of Electronic Materials, 39(9): 1735–1740, (2010).
  • [45] Mamur, H., and Ahiska, R., “A review: Thermoelectric generators in renewable energy”, International Journal of Renewable Energy Research (IJRER), 4(1): 128–136, (2014).
  • [46] Champier, D., “Thermoelectric generators: A review of applications”, Energy Conversion and Management, 140: 167–181, (2017).
  • [47] Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M. A. P., and Kumar, R., “Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials”, Energy, 186: 115849, (2019).
  • [48] Huang, Y., Xu, D., Kan, J., and Li, W., “Study on field experiments of forest soil thermoelectric power generation devices”, Plos One, 14(8): e0221019, (2019).
  • [49] Ramírez, R., Gutiérrez, A. S., Eras, J. J. C., Valencia, K., Hernández, B., and Forero, J. D., “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines”, Journal of Cleaner Production, 241: 118412, (2019).
  • [50] Karthick, K., Suresh, S., Joy, G. C., and Dhanuskodi, R., “Experimental investigation of solar reversible power generation in Thermoelectric Generator (TEG) using thermal energy storage”, Energy for Sustainable Development, 48: 107–114, (2019).
  • [51] Wang, Y., Zhu, W., Deng, Y., Fu, B., Zhu, P., Yu, Y., Li, J., and Guo, J., “Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator”, Nano Energy, 73: 104773, (2020).
  • [52] Li, G., Shittu, S., Ma, X., and Zhao, X., “Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric”, Energy, 171: 599–610, (2019).
  • [53] Novak, T. G., Kim, J., Kim, J., Tiwari, A. P., Shin, H., Song, J. Y., and Jeon, S., “Complementary n‐type and p‐type graphene films for high power factor TE generators”, Advanced Functional Materials, 30(28): 2001760, (2020).
  • [54] Elyamny, S., Dimaggio, E., Magagna, S., Narducci, D., and Pennelli, G., “High power TE generator based on vertical silicon nanowires”, Nano Letters, 20(7): 4748–4753, (2020).
  • [55] He, W., Wang, S., and Yue, L., “High net power output analysis with changes in exhaust temperature in a TE generator system”, Applied Energy, 196: 259–267, (2017).
  • [56] Wang, Y., Qiu, L., Luo, Y., Ding, R., and Jiang, F., “A piezoelectric sensor network with shared signal transmission wires for structural health monitoring of aircraft smart skin”, Mechanical Systems and Signal Processing, 141: 106730, (2020).
  • [57] Woolley, E., Luo, Y., and Simeone, A., “Industrial waste heat recovery: A systematic approach”, Sustainable Energy Technologies and Assessments, 29: 50–59, (2018).
  • [58] Araiz, M., Casi, Á., Catalán, L., Martínez, Á., and Astrain, D., “Prospects of waste-heat recovery from a real industry using TE generators: Economic and power output analysis”, Energy Conversion and Management, 205: 112376, (2020).
  • [59] Hu, G., Edwards, H., and Lee, M., “Silicon integrated circuit TE generators with a high specific power generation capacity”, Nature Electronics, 2(7): 300–306, (2019).
  • [60] Tomita, M., Oba, S., Himeda, Y., Yamato, R., Shima, K., Kumada, T., Xu, M., Takezawa, H., Mesaki, K., Tsuda, K., Hashimoto, S., Zhan, T., Zhang, H., Kamakura, Y., Suzuki, Y., Inokawa, H., Ikeda, H., Matsukawa, T., Matsuki, T., and Watanabe, T. “10μW/cm2-Class High power density silicon TE energy harvester compatible with CMOS-VLSI technology”, IEEE Symposia on VLSI Technology and Circuits, Hawaii, USA, June 21, 93–94, (2018).
  • [61] Ando Junior, O. H., Calderon, N. H., and De Souza, S. S., “Characterization of a TE generator (TEG) system for waste heat recovery”, Energies, 11(6): 1555, (2018).
  • [62] Dai, D., Zhou, Y., and Liu, J., “Liquid metal based TE generation system for waste heat recovery”, Renewable Energy, 36(12): 3530–3536, (2011).
  • [63] Mamur, H., and Ahiska, R., “Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators”, Energy Conversion and Management, 97: 265–272, (2015).
  • [64] Johansson, M. T., and Söderström, M., “Electricity generation from low-temperature industrial excess heat—an opportunity for the steel industry”, Energy Efficiency, 7(2): 203–215, (2014).
  • [65] Ebling, D. G., Krumm, A., Pfeiffelmann, B., Gottschald, J., Bruchmann, J., Benim, A. C., Adam, M., Labs, R., Herbetz, R. R., and Stunz, A., “Development of a system for TE heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7): 3433–3439, (2016).
  • [66] Kober, M., “Holistic development of TE generators for automotive applications”, Journal of Electronic Materials, 49(5): 2910–2919, (2020).
  • [67] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q., “Performance analysis of a waste heat recovery TE generation system for automotive application”, Energy Conversion and Management, 90: 121–127, (2015).
  • [68] Zhang, Y., Cleary, M., Wang, X., Kempf, N., Schoensee, L., Yang, J., Joshi, G., and Meda, L., “High-temperature and high-power-density nanostructured TE generator for automotive waste heat recovery”, Energy Conversion and Management, 105: 946–950, (2015).
  • [69] Pacheco, N., Brito, F. P., Vieira, R., Martins, J., Barbosa, H., and Goncalves, L. M., “Compact automotive TE generator with embedded heat pipes for thermal control”, Energy, 197: 117154, (2020).
  • [70] Nader, W. B., “TE generator optimization for hybrid electric vehicles”, Applied Thermal Engineering, 167: 114761, (2020).
  • [71] Kim, T.Y., Kwak, J., and Kim, B. W., “Application of compact TE generator to hybrid electric vehicle engine operating under real vehicle operating conditions”, Energy Conversion and Management, 201: 112150, (2019).
  • [72] Kim, T. Y., Kwak, J., and Kim, B. W., “Energy harvesting performance of hexagonal shaped TE generator for passenger vehicle applications: An experimental approach”, Energy Conversion and Management, 160: 14–21, (2018).
  • [73] Wang, J., Song, X., Li, Y., Zhang, C., Zhao, C., and Zhu, L., “Modeling and analysis of TE generators for diesel engine exhaust heat recovery system”, Journal of Energy Engineering, 146(2): 04020002, (2020).
  • [74] Choi, Y., Negash, A., and Kim, T. Y., “Waste heat recovery of diesel engine using porous medium-assisted TE generator equipped with customized TE modules”, Energy Conversion and Management, 197: 111902, (2019).
  • [75] Aljaghthamand, M., and Celik, E., “Design optimization of oil pan TE generator to recover waste heat from internal combustion engines”, Energy, 200: 117547, (2020).
  • [76] Crane, D., LaGrandeur, J., Jovovic, V., Ranalli, M., Adldinger, M., Poliquin, E., Dean, J., Kossakovski, D., Mazar, B., and Maranville, C., “TEG on-vehicle performance and model validation and what it means for further TEG development”, Journal of Electronic Materials, 42(7): 1582–1591, (2013).
  • [77] Dong, Z., Li, D., Wang, Z., and Sun, M., “A review on exergy analysis of aerospace power systems”, Acta Astronautica, 152: 486–495, (2018).
  • [78] Boccardi, S., Ciampa, F., and Meo, M., “Design and development of a heatsink for TE power harvesting in aerospace applications”, Smart Materials and Structures, 28(10): 105057, (2019).
  • [79] Pearson, M. R., Eaton, M. J., Pullin, R., Featherston, C. A., and Holford, K. M., “Energy harvesting for aerospace structural health monitoring systems”, Journal of Physics: Conference Series, 382(1): 012025, (2012).
  • [80] Mativo, J., and Hallinan, K., “Development of compliant thermoelectric generators (TEGs) in aerospace applications using topology optimization”, Energy Harvesting and Systems, 4(2): 87–105, (2019).
  • [81] Janak, L., Ancik, Z., Vetiska, J., and Hadas, Z., “Thermoelectric generator based on MEMS module as an electric power backup in aerospace applications”, Materials Today: Proceedings, 2(2): 865–870, (2015).
  • [82] Sánchez, S. A., “Finite element analysis of thermoelectric-galvanomagnetic interactions and their aerospace applications”, Aerotecnica Missili & Spazio, 94(2): 133–135, (2015).
  • [83] Thielen, M., Sigrist, L., Magno, M., Hierold, C., and Benini, L., “Human body heat for powering wearable devices: From thermal energy to application”, Energy Conversion and Management, 131: 44–54, (2017).
  • [84] Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F. M., Mohaddes, F., Ramesh, V. P., Sargolzaeiaval, Y., Snouwaert, N., Öztürk, M. C., and Vashaee, D., “Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems”, Applied Energy, 258: 114069, (2020).
  • [85] Zhao, L., Li, H., Meng, J., and Li, Z., “The recent advances in self-powered medical information sensors”, InfoMat, 2(1): 212–234, (2020).
  • [86] Kim, C. S., Yang, H. M., Lee, J., Lee, G. S., Choi, H., Kim, Y. J., Lim, S. H., Cho, S. H., and Cho, B. J., “Self-powered wearable electrocardiography using a wearable thermoelectric power generator”, ACS Energy Letters, 3(3): 501–507, (2018).
  • [87] Wang, Y., Shi, Y., Mei, D., and Chen, Z., “Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer”, Applied Energy, 215: 690–698, (2018).
  • [88] Wang, Y., Zhu, W., Deng, Y., Fu, B., Zhu, P., Yu, Y., Li, J., and Guo, J., “Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator”, Nano Energy, 73: 104773, (2020).
  • [89] Mohsen, S., Zekry, A., Youssef, K., and Abouelatta, M., “A self-powered wearable wireless sensor system powered by a hybrid energy harvester for healthcare applications”, Wireless Personal Communication, 116: 3143–3164, (2020).
  • [90] Hyland, M., Hunter, H., Liu, J., Veety, E., and Vashaee, D., “Wearable thermoelectric generators for human body heat harvesting”, Applied Energy, 182: 518–524, (2016).
  • [91] Yoon, Y. S., Zo, H., Choi, M., Lee D., and Lee, H. W., “Exploring the dynamic knowledge structure of studies on the Internet of things: Keyword analysis”, ETRI Journal, 40(6): 745–758, (2018).
  • [92] Madakam, S., Lake, V., Lake, V., and Lake, V., “Internet of Things (IoT): A literature review”, Journal Computer and Communications, 3(05): 56616, (2015).
  • [93] Haras, M., and Skotnicki, T., “Thermoelectricity for IoT–A review”, Nano Energy, 54: 461–476, (2018).
  • [94] Aceto, G., Persico, V., and Pescapé, A., “Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0”, Journal Industrial Information Integration, 18: 100129, (2020).
  • [95] Augustin, A., Yi, J., Clausen, T., and Townsley, W. M., “A study of LoRa: long range & low power networks for the internet of things”, Sensors, 16(9): 1466, (2016).
  • [96] Haras, M., Markiewicz, M., Monfray, S., and Skotnicki, T., “Pulse mode of operation–A new booster of TEG, improving power up to X2.7–to better fit IoT requirements”, Nano Energy, 68: 104204, (2020).
  • [97] Kilani, D., Alhawari, M., Mohammad, B., Saleh, H., Sanduleanu, M., and Ismail, M., “Cascaded power management unit characterization for TEG-based IoT devices in 65 nm CMOS”, Microelectronics Journal, 90: 285–296, (2019).
  • [98] Narducci, D., “Thermoelectric harvesters and the internet of things: technological and economic drivers”, Journal of Physics: Energy, 1(2): 024001, (2019).
  • [99] Park, H., Lee, D., Park, G., Park, S., Khan, S., Kim, J., and Kim, W., “Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors”, Journal of Physics: Energy 1(4): 042001, (2019).
  • [100] Afghan, S. A., and Géza, H., “Modelling and analysis of energy harvesting in internet of things (IoT): Characterization of a thermal energy harvesting circuit for IoT based applications with LTC3108”, Energies 12(20): 3873, (2019).
  • [101] Buratti, C., Conti, A., Dardari, D., and Verdone, R., “An overview on wireless sensor networks technology and evolution”, Sensors, 9(9): 6869–6896, (2009).
  • [102] Cheng, C. T., Chi, K. T., and Lau, F. C., “A delay-aware data collection network structure for wireless sensor networks”, IEEE Sensors Journals, 11(3): 699–710, (2010).
  • [103] Yick, J., Mukherjee, B., and Ghosal, D., “Wireless sensor network survey”, Computer Networks, 52(12): 2292–2330, (2008).
  • [104] Sah, D. K., and Amgoth, T., “Renewable energy harvesting schemes in wireless sensor networks: A survey”, Information Fusion, 63: 223–247, (2020).
  • [105] Fu, X., Fortino, G., Pace, P., Aloi, G., and Li, W., “Environment-fusion multipath routing protocol for wireless sensor networks”, Information Fusion, 53: 4–19, (2020).
  • [106] Miloš, M., Aneta, P., Branislav, R., and Zoran, P., “A transient modeling of the thermoelectric generators for application in wireless sensor network nodes”, Electronics, 9(6): 1015, (2020).
  • [107] Liao, X., Liu, Y. Ren, J., Guan, L., Sang, X., Wang, B., Zhang, H., Wang, Q., and Ma, T., “Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment”, Energy, 202: 117724, (2020).
  • [108] Hou, L., and Chen, W., “A novel MPPT method for autonomous wireless sensor networks node with thermal energy harvesting”, Engineering Research Express, 2(1): 015005, (2020).
  • [109] Im, J. P., Kim, J. H., Lee, J. W., Woo, J. Y., Im, S. Y., Kim, Y., Eom, Y. S., Choi, W. C., Kim, J. S., and Moon, S. E., “Self-powered autonomous wireless sensor node by using silicon-based 3D thermoelectric energy generator for environmental monitoring application”, Energies, 13(3): 674, (2020).
  • [110] Lineykin, S., Sitbon, M., and Kuperman, A., “Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines”, Applied Energy, 283: 116240, (2020).
  • [111] Bayod-Rújula, Á. A., Uche, J., Tejero, J. A., Del Amo, A., Martínez-Gracia, A., and Usón, S., “Integration of thermoelectric generators (TEG) in solar PVT panels”, Renewable Energy Power Quality Journal, 17: 495–499, (2019).
  • [112] Chávez-Urbiola, E. A., Vorobiev, Y. V., and Bulat, L. P., “Solar hybrid systems with thermoelectric generators”, Solar Energy, 86(1): 369–378, (2012).
  • [113] Yavuz, A. H., “Solar thermoelectric generator assisted irrigation water pump: Design, simulation and economic analysis”, Sustainable Energy Technologies and Assessments, 41: 100786, (2020).
  • [114] Su, S., and Chen, J., “Simulation investigation of high-efficiency solar thermoelectric generators with inhomogeneously doped nanomaterials”, IEEE Transactions on Industrial Electronics, 62(6): 3569–3575, (2014).
  • [115] Fathabadi, H., “Novel solar-powered photovoltaic/thermoelectric hybrid power source”, Renewable Energy, 146: 426–434, (2020).
  • [116] Chen, W. H., Wang, C. C., Hung, C. I., Yang, C. C., and Juang, R. C., “Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator”, Energy, 64: 287–297, (2014).
  • [117] Liu, H. B., Meng, J. H., Wang, X. D., and Chen, W. H., “A new design of solar thermoelectric generator with combination of segmented materials and asymmetrical legs”, Energy Conversion and Management, 175: 11–20, (2018).
  • [118] Abdo, A., Ookawara, S., and Ahmed, M., “Performance evaluation of a new design of concentrator photovoltaic and solar thermoelectric generator hybrid system”, Energy Conversion and Management, 195: 1382–1401, (2019).
  • [119] Shittu, S., Li, G., Xuan, Q., Zhao, X., Ma, X., and Cui, Y., “Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux”, Energy, 199: 117433, (2020).
Year 2022, , 896 - 915, 01.09.2022
https://doi.org/10.35378/gujs.934901

Abstract

References

  • [1] Quan, R., Li, T., Yue, Y., Chang, Y., and Tan, B., “Experimental study on a TE generator for industrial waste heat recovery based on a hexagonal heat exchanger”, Energies, 13(12): 3137, (2020).
  • [2] Tahami, S. A., Gholikhani, M., and Dessouky, S., “TE energy harvesting system for roadway sustainability”, Transportation Research Record, 2674(2): 135–145, (2020).
  • [3] Saraereh, O. A., Alsaraira, A., Khan, I., and Choi, B. J., “A hybrid energy harvesting design for on-body Internet-of-Things (IoT) networks”, Sensors, 20(2): 407, (2020).
  • [4] Reddick, C., Sorin, M., Bonhivers, J. C., and Laperle, D., “Waste heat and renewable energy integration in buildings”, Energy and Buildings, 211: 109803, (2020).
  • [5] He, M., Wang, E., Zhang, Y., Zhang, W., Zhang, F., and Zhao, C., “Performance analysis of a multilayer TE generator for exhaust heat recovery of a heavy-duty diesel engine”, Applied Energy, 274: 115298, (2020).
  • [6] Leonard, M. D., Michaelides, E. E., and Michaelides, D. N., “Energy storage needs for the substitution of fossil fuel power plants with renewable”, Renewable Energy, 145: 951–962, (2020).
  • [7] Kim, H., You, H., Choi, K. S., and Han, S., “A study on interconnecting to the power grid fof new energy using the natural gas pressure”, Journal of Electrical Engineering & Technology, 15(1): 307–314, (2020).
  • [8] Araiz, M., Casi, Á., Catalán, L., Martínez, Á., and Astrain, D., “Prospects of waste-heat recovery from a real industry using TE generators: Economic and power output analysis”, Energy Conversion and Management, 205: 112376, (2020).
  • [9] Hussain, T., Li, X., Danish, M. H., Rehman, M. U., Zhang, J., Li, D., Chen, G., and Tang, G., “Realizing high TE performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te”, Nano Energy, 73: 104832, (2020).
  • [10] Chuang, F. C., Chang, C. L., Chow, Y. N., Shen, H. C., Wu, T. L., Chen, Y. C., Chiang, C. S., Liao, F. L., and Chen, Y. H., “Application of water tank employing smart sensor for thermal–electric energy conversion on vehicles”, Sensors and Materials, 32(1): 135–148, (2020).
  • [11] Ashraf, M., “A Maximum power-point tracking multiple-input thermal energy harvesting module”, International Journal of Electronics and Communications, 121: 153231, (2020).
  • [12] Kang, M., and Yeatman, E. M., “Coupling of piezo-and pyro-electric effects in miniature thermal energy harvesters”, Applied Energy, 262: 114496, (2020).
  • [13] Weng, M., and Geng, C., “Research on computer centralized management system based on thermal energy data acquisition and display”, Thermal Science, 24(5): 3299–3307, (2020).
  • [14] Cong, P., Zhou, J., Li, L., Cao, K., Wei, T., and Li, K., “A Survey of hierarchical energy optimization for mobile edge computing: A perspective from end devices to the cloud”, ACM Computing Surveys, 53(2): 38, (2020).
  • [15] Huang, L., Lin, S., Xu, Z., Zhou, H., Duan, J., Hu, B., and Zhou, J., “Fiber-based energy conversion devices for human-body energy harvesting”, Advanced Materials, 32(5): 1902034, (2020).
  • [16] Nozariasbmarz, A., Suarez, F., Dycus, J. H., Cabral, M. J., LeBeau, J. M., Öztürk, M. C., and Vashaee, D., “TE generators for wearable body heat harvesting: material and device concurrent optimization”, Nano Energy, 67: 104265, (2020).
  • [17] Yang, S. M., Wang, J. Y., and Chen, M. D., “On the improved performance of TE generators with low dimensional polysilicon-germanium thermocouples by BiCMOS process”, Sensors and Actuators A: Physical, 306: 111924, (2020).
  • [18] Jia, X., and Guo, Q., “Design study of bismuth-telluride-based TE generators based on TE and mechanical performance”, Energy, 190: 116226, (2020).
  • [19] Zhang, X., Yang, B., Yu, T., and Jiang, L., “Dynamic Surrogate Model based optimization for MPPT of centralized thermoelectric generation systems under heterogeneous temperature difference”, IEEE Transactions on Energy Conversion, 35(2): 966–976, (2020).
  • [20] Sabry, M., Lashin, A., and Al Turkestani, M., “Experimental and simulation investigations of CPV/TEG hybrid system”, Journal of King Saud University-Science, 33(2): 101321, (2021).
  • [21] Narjis, A., Liang, C. T., El Aakib, H., Tchenka, A., and Outzourhit, A., “Design optimization for maximized thermoelectric generator performance”, Journal of Electronic Materials, 49(1): 306–310, (2020).
  • [22] Hegde, G. S., Prabhu, A. N., Rao, A., and Chattopadhyay, M. K., “Enhancement in thermoelectric figure of merit of bismuth telluride system due to tin and selenium co-doping”, Materials Science in Semiconductor Processing, 127: 105645, (2021).
  • [23] Yanagisawa, R., Tsujii, N., Takao, M. O. R. I., Ruther, P., Paul, O., and Nomura, M., “Nanostructured planar-type uni-leg Si TE generators”, Applied Physics Express, 13(9): 095001, (2020).
  • [24] Lindorf, M., Mazzio, K. A., Pflaum, J., Nielsch, K., Brütting, W., and Albrecht, M., “Organic-based thermoelectrics”, Journal of Materials Chemistry A, 8(1): 7495–7507, (2020).
  • [25] Zhao, W., Ding, J., Zou, Y., Di, C. A., and Zhu, D., “Chemical doping of organic semiconductors for thermoelectric applications”, Chemical Society Reviews, 49(20): 7210–7228, (2020).
  • [26] Xu, Q., Qu, S., Ming, C., Qiu, P., Yao, Q., Zhu, C., Wei, T. R., He, J., Shi, X., and Chen, L., “Conformal organic–inorganic semiconductor composites for flexible thermoelectrics”, Energy & Environmental Science, 13(2): 511–518, (2020).
  • [27] Du, Y., Xu, J., Paul, B., and Eklund, P., “Flexible thermoelectric materials and devices”, Applied Materials Today, 12: 366–388, (2018).
  • [28] Russ, B., Robb, M. J., Brunetti, F. G., Miller, P. L., Perry, E. E., Patel, S. N., Ho, V., Chang, W. B., Urban, J. J., Chabinyc, M. L., Hawker, C. J., and Segalman, A., “Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design”, Advanced Materials, 26(21): 3473–3477, (2014).
  • [29] Wang, H., and Yu, C., “Organic thermoelectrics: materials preparation, performance optimization, and device integration”, Joule, 3(1): 53–80, (2019).
  • [30] Mamur, H., Dilmac, O. F., and Bhuiyan, M. R. A., “A review on performance evaluation of Bi2Te3-based and some other TE nanostructure materials”, Current Nanoscience, 17(3): 423–446, (2021).
  • [31] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost–effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering, 39(3): 23–33, (2020).
  • [32] Mamur, H., Bhuiyan, M. R. A., Korkmaz, F., and Nil, M., “A review on bismuth telluride (Bi2Te3) nanostructure for TE applications”, Renewable & Sustainable Energy Reviews, 82: 4159–4169, (2018).
  • [33] Mamur, H., and Bhuiyan, M. R. A., “Bismuth telluride (Bi2Te3) nanostructure for TE applications”, International Scientific and Vocational Studies Journal, 3(1): 1–7, (2019).
  • [34] Mamur, H., Dilmac, O. F., Korucu, H., and Bhuiyan, M. R. A., “Cost–effective chemical solution synthesis of bismuth telluride nanostructure for TE applications”, Micro & Nano Letters, 13(8): 1117–1120, (2018).
  • [35] Bhuiyan, M. R. A., and Mamur, H., “Review of the bismuth telluride (Bi2Te3) nanoparticle: growth and characterization”, International Journal Energy Applications and Technologies, 3(2): 27–31, (2016).
  • [36] Bhuiyan, M. R. A., and Mamur, H., “Synthesis and characterization of Se doped Bi2Te3 nanocrystalline materials”, Karaelmas Science and Engineering Journal, 9(1): 11–21, (2019).
  • [37] Akter, M., Khan, M. N. I., Mamur, H., and Bhuiyan, M.R.A., “Synthesis and characterisation of CdSe QDs by using a chemical solution route”, Micro & Nano Letters, 15(5): 287–290, (2020).
  • [38] Bhuiyan, M. R. A., Miah, M. A. H., and Begum, J., “Substrate temperature effect on the structural and optical properties of ZnSe thin films”, Journal of Bangladesh Academy Sciences, 36(2): 233–240, (2012).
  • [39] Bhuiyan, M. R. A., Al Azad, M. A., and Hasan, S. M., “Annealing effect on structural and electrical properties of AgGaSe2 thin films”, Indian Journal Pure & Applied Physics, 49: 180–185, (2011).
  • [40] Bhuiyan, M. R. A., Saha, D. K., and Hasan, S.M., “Structural and electrical properties of polycrystalline AgxGa2-xSe2 (0.4≤ x≤ 1.6) thin films”, Indian Journal Pure & Applied Physics, 47: 787–792, (2009).
  • [41] Bhuiyan, M. R. A., Rahman, M. K., and Firoz Hasan, S. M., “Valence-band characterization of AgGaSe2 thin films”, Journal of Physics D: Applied Physics, 41(23): 235108, (2008).
  • [42] Bhuiyan, M. R. A., and Firoz Hasan, S. M., “Optical properties of polycrystalline AgxGa2−xSe2 (0.4≤x≤1.6) thin films”, Solar Energy Materials and Solar Cells, 91(2-3): 148–152, (2007).
  • [43] Bhuiyan, M. R. A., and Firoz Hasan, S. M., “Optical absorption characteristics of polycrystalline AgGaSe2 thin films”, Journal of Physics D: Applied Physics, 39(23): 4935, (2006).
  • [44] Amatya, R., and Ram, R.J., “Solar thermoelectric generator for micropower applications”, Journal of Electronic Materials, 39(9): 1735–1740, (2010).
  • [45] Mamur, H., and Ahiska, R., “A review: Thermoelectric generators in renewable energy”, International Journal of Renewable Energy Research (IJRER), 4(1): 128–136, (2014).
  • [46] Champier, D., “Thermoelectric generators: A review of applications”, Energy Conversion and Management, 140: 167–181, (2017).
  • [47] Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M. A. P., and Kumar, R., “Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials”, Energy, 186: 115849, (2019).
  • [48] Huang, Y., Xu, D., Kan, J., and Li, W., “Study on field experiments of forest soil thermoelectric power generation devices”, Plos One, 14(8): e0221019, (2019).
  • [49] Ramírez, R., Gutiérrez, A. S., Eras, J. J. C., Valencia, K., Hernández, B., and Forero, J. D., “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines”, Journal of Cleaner Production, 241: 118412, (2019).
  • [50] Karthick, K., Suresh, S., Joy, G. C., and Dhanuskodi, R., “Experimental investigation of solar reversible power generation in Thermoelectric Generator (TEG) using thermal energy storage”, Energy for Sustainable Development, 48: 107–114, (2019).
  • [51] Wang, Y., Zhu, W., Deng, Y., Fu, B., Zhu, P., Yu, Y., Li, J., and Guo, J., “Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator”, Nano Energy, 73: 104773, (2020).
  • [52] Li, G., Shittu, S., Ma, X., and Zhao, X., “Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric”, Energy, 171: 599–610, (2019).
  • [53] Novak, T. G., Kim, J., Kim, J., Tiwari, A. P., Shin, H., Song, J. Y., and Jeon, S., “Complementary n‐type and p‐type graphene films for high power factor TE generators”, Advanced Functional Materials, 30(28): 2001760, (2020).
  • [54] Elyamny, S., Dimaggio, E., Magagna, S., Narducci, D., and Pennelli, G., “High power TE generator based on vertical silicon nanowires”, Nano Letters, 20(7): 4748–4753, (2020).
  • [55] He, W., Wang, S., and Yue, L., “High net power output analysis with changes in exhaust temperature in a TE generator system”, Applied Energy, 196: 259–267, (2017).
  • [56] Wang, Y., Qiu, L., Luo, Y., Ding, R., and Jiang, F., “A piezoelectric sensor network with shared signal transmission wires for structural health monitoring of aircraft smart skin”, Mechanical Systems and Signal Processing, 141: 106730, (2020).
  • [57] Woolley, E., Luo, Y., and Simeone, A., “Industrial waste heat recovery: A systematic approach”, Sustainable Energy Technologies and Assessments, 29: 50–59, (2018).
  • [58] Araiz, M., Casi, Á., Catalán, L., Martínez, Á., and Astrain, D., “Prospects of waste-heat recovery from a real industry using TE generators: Economic and power output analysis”, Energy Conversion and Management, 205: 112376, (2020).
  • [59] Hu, G., Edwards, H., and Lee, M., “Silicon integrated circuit TE generators with a high specific power generation capacity”, Nature Electronics, 2(7): 300–306, (2019).
  • [60] Tomita, M., Oba, S., Himeda, Y., Yamato, R., Shima, K., Kumada, T., Xu, M., Takezawa, H., Mesaki, K., Tsuda, K., Hashimoto, S., Zhan, T., Zhang, H., Kamakura, Y., Suzuki, Y., Inokawa, H., Ikeda, H., Matsukawa, T., Matsuki, T., and Watanabe, T. “10μW/cm2-Class High power density silicon TE energy harvester compatible with CMOS-VLSI technology”, IEEE Symposia on VLSI Technology and Circuits, Hawaii, USA, June 21, 93–94, (2018).
  • [61] Ando Junior, O. H., Calderon, N. H., and De Souza, S. S., “Characterization of a TE generator (TEG) system for waste heat recovery”, Energies, 11(6): 1555, (2018).
  • [62] Dai, D., Zhou, Y., and Liu, J., “Liquid metal based TE generation system for waste heat recovery”, Renewable Energy, 36(12): 3530–3536, (2011).
  • [63] Mamur, H., and Ahiska, R., “Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators”, Energy Conversion and Management, 97: 265–272, (2015).
  • [64] Johansson, M. T., and Söderström, M., “Electricity generation from low-temperature industrial excess heat—an opportunity for the steel industry”, Energy Efficiency, 7(2): 203–215, (2014).
  • [65] Ebling, D. G., Krumm, A., Pfeiffelmann, B., Gottschald, J., Bruchmann, J., Benim, A. C., Adam, M., Labs, R., Herbetz, R. R., and Stunz, A., “Development of a system for TE heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7): 3433–3439, (2016).
  • [66] Kober, M., “Holistic development of TE generators for automotive applications”, Journal of Electronic Materials, 49(5): 2910–2919, (2020).
  • [67] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q., “Performance analysis of a waste heat recovery TE generation system for automotive application”, Energy Conversion and Management, 90: 121–127, (2015).
  • [68] Zhang, Y., Cleary, M., Wang, X., Kempf, N., Schoensee, L., Yang, J., Joshi, G., and Meda, L., “High-temperature and high-power-density nanostructured TE generator for automotive waste heat recovery”, Energy Conversion and Management, 105: 946–950, (2015).
  • [69] Pacheco, N., Brito, F. P., Vieira, R., Martins, J., Barbosa, H., and Goncalves, L. M., “Compact automotive TE generator with embedded heat pipes for thermal control”, Energy, 197: 117154, (2020).
  • [70] Nader, W. B., “TE generator optimization for hybrid electric vehicles”, Applied Thermal Engineering, 167: 114761, (2020).
  • [71] Kim, T.Y., Kwak, J., and Kim, B. W., “Application of compact TE generator to hybrid electric vehicle engine operating under real vehicle operating conditions”, Energy Conversion and Management, 201: 112150, (2019).
  • [72] Kim, T. Y., Kwak, J., and Kim, B. W., “Energy harvesting performance of hexagonal shaped TE generator for passenger vehicle applications: An experimental approach”, Energy Conversion and Management, 160: 14–21, (2018).
  • [73] Wang, J., Song, X., Li, Y., Zhang, C., Zhao, C., and Zhu, L., “Modeling and analysis of TE generators for diesel engine exhaust heat recovery system”, Journal of Energy Engineering, 146(2): 04020002, (2020).
  • [74] Choi, Y., Negash, A., and Kim, T. Y., “Waste heat recovery of diesel engine using porous medium-assisted TE generator equipped with customized TE modules”, Energy Conversion and Management, 197: 111902, (2019).
  • [75] Aljaghthamand, M., and Celik, E., “Design optimization of oil pan TE generator to recover waste heat from internal combustion engines”, Energy, 200: 117547, (2020).
  • [76] Crane, D., LaGrandeur, J., Jovovic, V., Ranalli, M., Adldinger, M., Poliquin, E., Dean, J., Kossakovski, D., Mazar, B., and Maranville, C., “TEG on-vehicle performance and model validation and what it means for further TEG development”, Journal of Electronic Materials, 42(7): 1582–1591, (2013).
  • [77] Dong, Z., Li, D., Wang, Z., and Sun, M., “A review on exergy analysis of aerospace power systems”, Acta Astronautica, 152: 486–495, (2018).
  • [78] Boccardi, S., Ciampa, F., and Meo, M., “Design and development of a heatsink for TE power harvesting in aerospace applications”, Smart Materials and Structures, 28(10): 105057, (2019).
  • [79] Pearson, M. R., Eaton, M. J., Pullin, R., Featherston, C. A., and Holford, K. M., “Energy harvesting for aerospace structural health monitoring systems”, Journal of Physics: Conference Series, 382(1): 012025, (2012).
  • [80] Mativo, J., and Hallinan, K., “Development of compliant thermoelectric generators (TEGs) in aerospace applications using topology optimization”, Energy Harvesting and Systems, 4(2): 87–105, (2019).
  • [81] Janak, L., Ancik, Z., Vetiska, J., and Hadas, Z., “Thermoelectric generator based on MEMS module as an electric power backup in aerospace applications”, Materials Today: Proceedings, 2(2): 865–870, (2015).
  • [82] Sánchez, S. A., “Finite element analysis of thermoelectric-galvanomagnetic interactions and their aerospace applications”, Aerotecnica Missili & Spazio, 94(2): 133–135, (2015).
  • [83] Thielen, M., Sigrist, L., Magno, M., Hierold, C., and Benini, L., “Human body heat for powering wearable devices: From thermal energy to application”, Energy Conversion and Management, 131: 44–54, (2017).
  • [84] Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F. M., Mohaddes, F., Ramesh, V. P., Sargolzaeiaval, Y., Snouwaert, N., Öztürk, M. C., and Vashaee, D., “Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems”, Applied Energy, 258: 114069, (2020).
  • [85] Zhao, L., Li, H., Meng, J., and Li, Z., “The recent advances in self-powered medical information sensors”, InfoMat, 2(1): 212–234, (2020).
  • [86] Kim, C. S., Yang, H. M., Lee, J., Lee, G. S., Choi, H., Kim, Y. J., Lim, S. H., Cho, S. H., and Cho, B. J., “Self-powered wearable electrocardiography using a wearable thermoelectric power generator”, ACS Energy Letters, 3(3): 501–507, (2018).
  • [87] Wang, Y., Shi, Y., Mei, D., and Chen, Z., “Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer”, Applied Energy, 215: 690–698, (2018).
  • [88] Wang, Y., Zhu, W., Deng, Y., Fu, B., Zhu, P., Yu, Y., Li, J., and Guo, J., “Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator”, Nano Energy, 73: 104773, (2020).
  • [89] Mohsen, S., Zekry, A., Youssef, K., and Abouelatta, M., “A self-powered wearable wireless sensor system powered by a hybrid energy harvester for healthcare applications”, Wireless Personal Communication, 116: 3143–3164, (2020).
  • [90] Hyland, M., Hunter, H., Liu, J., Veety, E., and Vashaee, D., “Wearable thermoelectric generators for human body heat harvesting”, Applied Energy, 182: 518–524, (2016).
  • [91] Yoon, Y. S., Zo, H., Choi, M., Lee D., and Lee, H. W., “Exploring the dynamic knowledge structure of studies on the Internet of things: Keyword analysis”, ETRI Journal, 40(6): 745–758, (2018).
  • [92] Madakam, S., Lake, V., Lake, V., and Lake, V., “Internet of Things (IoT): A literature review”, Journal Computer and Communications, 3(05): 56616, (2015).
  • [93] Haras, M., and Skotnicki, T., “Thermoelectricity for IoT–A review”, Nano Energy, 54: 461–476, (2018).
  • [94] Aceto, G., Persico, V., and Pescapé, A., “Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0”, Journal Industrial Information Integration, 18: 100129, (2020).
  • [95] Augustin, A., Yi, J., Clausen, T., and Townsley, W. M., “A study of LoRa: long range & low power networks for the internet of things”, Sensors, 16(9): 1466, (2016).
  • [96] Haras, M., Markiewicz, M., Monfray, S., and Skotnicki, T., “Pulse mode of operation–A new booster of TEG, improving power up to X2.7–to better fit IoT requirements”, Nano Energy, 68: 104204, (2020).
  • [97] Kilani, D., Alhawari, M., Mohammad, B., Saleh, H., Sanduleanu, M., and Ismail, M., “Cascaded power management unit characterization for TEG-based IoT devices in 65 nm CMOS”, Microelectronics Journal, 90: 285–296, (2019).
  • [98] Narducci, D., “Thermoelectric harvesters and the internet of things: technological and economic drivers”, Journal of Physics: Energy, 1(2): 024001, (2019).
  • [99] Park, H., Lee, D., Park, G., Park, S., Khan, S., Kim, J., and Kim, W., “Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors”, Journal of Physics: Energy 1(4): 042001, (2019).
  • [100] Afghan, S. A., and Géza, H., “Modelling and analysis of energy harvesting in internet of things (IoT): Characterization of a thermal energy harvesting circuit for IoT based applications with LTC3108”, Energies 12(20): 3873, (2019).
  • [101] Buratti, C., Conti, A., Dardari, D., and Verdone, R., “An overview on wireless sensor networks technology and evolution”, Sensors, 9(9): 6869–6896, (2009).
  • [102] Cheng, C. T., Chi, K. T., and Lau, F. C., “A delay-aware data collection network structure for wireless sensor networks”, IEEE Sensors Journals, 11(3): 699–710, (2010).
  • [103] Yick, J., Mukherjee, B., and Ghosal, D., “Wireless sensor network survey”, Computer Networks, 52(12): 2292–2330, (2008).
  • [104] Sah, D. K., and Amgoth, T., “Renewable energy harvesting schemes in wireless sensor networks: A survey”, Information Fusion, 63: 223–247, (2020).
  • [105] Fu, X., Fortino, G., Pace, P., Aloi, G., and Li, W., “Environment-fusion multipath routing protocol for wireless sensor networks”, Information Fusion, 53: 4–19, (2020).
  • [106] Miloš, M., Aneta, P., Branislav, R., and Zoran, P., “A transient modeling of the thermoelectric generators for application in wireless sensor network nodes”, Electronics, 9(6): 1015, (2020).
  • [107] Liao, X., Liu, Y. Ren, J., Guan, L., Sang, X., Wang, B., Zhang, H., Wang, Q., and Ma, T., “Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment”, Energy, 202: 117724, (2020).
  • [108] Hou, L., and Chen, W., “A novel MPPT method for autonomous wireless sensor networks node with thermal energy harvesting”, Engineering Research Express, 2(1): 015005, (2020).
  • [109] Im, J. P., Kim, J. H., Lee, J. W., Woo, J. Y., Im, S. Y., Kim, Y., Eom, Y. S., Choi, W. C., Kim, J. S., and Moon, S. E., “Self-powered autonomous wireless sensor node by using silicon-based 3D thermoelectric energy generator for environmental monitoring application”, Energies, 13(3): 674, (2020).
  • [110] Lineykin, S., Sitbon, M., and Kuperman, A., “Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines”, Applied Energy, 283: 116240, (2020).
  • [111] Bayod-Rújula, Á. A., Uche, J., Tejero, J. A., Del Amo, A., Martínez-Gracia, A., and Usón, S., “Integration of thermoelectric generators (TEG) in solar PVT panels”, Renewable Energy Power Quality Journal, 17: 495–499, (2019).
  • [112] Chávez-Urbiola, E. A., Vorobiev, Y. V., and Bulat, L. P., “Solar hybrid systems with thermoelectric generators”, Solar Energy, 86(1): 369–378, (2012).
  • [113] Yavuz, A. H., “Solar thermoelectric generator assisted irrigation water pump: Design, simulation and economic analysis”, Sustainable Energy Technologies and Assessments, 41: 100786, (2020).
  • [114] Su, S., and Chen, J., “Simulation investigation of high-efficiency solar thermoelectric generators with inhomogeneously doped nanomaterials”, IEEE Transactions on Industrial Electronics, 62(6): 3569–3575, (2014).
  • [115] Fathabadi, H., “Novel solar-powered photovoltaic/thermoelectric hybrid power source”, Renewable Energy, 146: 426–434, (2020).
  • [116] Chen, W. H., Wang, C. C., Hung, C. I., Yang, C. C., and Juang, R. C., “Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator”, Energy, 64: 287–297, (2014).
  • [117] Liu, H. B., Meng, J. H., Wang, X. D., and Chen, W. H., “A new design of solar thermoelectric generator with combination of segmented materials and asymmetrical legs”, Energy Conversion and Management, 175: 11–20, (2018).
  • [118] Abdo, A., Ookawara, S., and Ahmed, M., “Performance evaluation of a new design of concentrator photovoltaic and solar thermoelectric generator hybrid system”, Energy Conversion and Management, 195: 1382–1401, (2019).
  • [119] Shittu, S., Li, G., Xuan, Q., Zhao, X., Ma, X., and Cui, Y., “Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux”, Energy, 199: 117433, (2020).
There are 119 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Mohammad Ruhul Amin Bhuiyan 0000-0001-7335-4158

Hayati Mamur 0000-0001-7555-5826

Mehmet Ali Üstüner 0000-0003-1846-8974

Ömer Faruk Dilmaç 0000-0002-9660-0638

Publication Date September 1, 2022
Published in Issue Year 2022

Cite

APA Bhuiyan, M. R. A., Mamur, H., Üstüner, M. A., Dilmaç, Ö. F. (2022). Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science, 35(3), 896-915. https://doi.org/10.35378/gujs.934901
AMA Bhuiyan MRA, Mamur H, Üstüner MA, Dilmaç ÖF. Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science. September 2022;35(3):896-915. doi:10.35378/gujs.934901
Chicago Bhuiyan, Mohammad Ruhul Amin, Hayati Mamur, Mehmet Ali Üstüner, and Ömer Faruk Dilmaç. “Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery”. Gazi University Journal of Science 35, no. 3 (September 2022): 896-915. https://doi.org/10.35378/gujs.934901.
EndNote Bhuiyan MRA, Mamur H, Üstüner MA, Dilmaç ÖF (September 1, 2022) Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science 35 3 896–915.
IEEE M. R. A. Bhuiyan, H. Mamur, M. A. Üstüner, and Ö. F. Dilmaç, “Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery”, Gazi University Journal of Science, vol. 35, no. 3, pp. 896–915, 2022, doi: 10.35378/gujs.934901.
ISNAD Bhuiyan, Mohammad Ruhul Amin et al. “Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery”. Gazi University Journal of Science 35/3 (September 2022), 896-915. https://doi.org/10.35378/gujs.934901.
JAMA Bhuiyan MRA, Mamur H, Üstüner MA, Dilmaç ÖF. Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science. 2022;35:896–915.
MLA Bhuiyan, Mohammad Ruhul Amin et al. “Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery”. Gazi University Journal of Science, vol. 35, no. 3, 2022, pp. 896-15, doi:10.35378/gujs.934901.
Vancouver Bhuiyan MRA, Mamur H, Üstüner MA, Dilmaç ÖF. Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science. 2022;35(3):896-915.

Cited By