ON RANDOM COINCIDENCE & FIXED POINTS FOR A PAIR OF HYBRID MEASURABLE MAPPINGS
Yıl 2017,
Cilt: 30 Sayı: 1, 269 - 281, 14.03.2017
Umesh Dongre
R. D. Daheriya
Manoj Ughade
,
Bhawna Parkhey
Öz
In this paper, we establish some random Coincidence point and random fixed point theorems for a pair of hybrid measurable mappings, which is generalizes and extends many results in the literature.
Kaynakça
- Bharucha-Ried, A.T., Fixed point theorem in
- probabilistic analysis, Bull. Amer. Math. Soc.,
- (1976), 641-645.
- Bogin, J., A generalization of a fixed point theo-
- rem og Gebel, Kirk and Shimi, Canad. Math.
- Bull., 19(1976), 7-12.
- Chandra, M., Mishra, S., Singh, S., Rhoades,
- B.E., Coincidence and fixed points of non-
- expansive type multi-valued and single-valued
- maps, Indian J. Pure Appl. Math.,26(5):393-
- ,1995.
- Chang, S.S., Huang, N.J., On the principle of
- randomization of fixed points for set valued
- mappings with applications, North-eastern
- Math. J., 7(1991), 486-491.
- Ciric, Lj. B., Non-expansive type mappings and
- a fixed point theorem in convex metric spaces,
- Rend. Accad. Naz. Sci. XL Mem. Mat., (5)
- vol.XIX (1995), 263-271.
- Ciric, Lj. B., On some mappings in metric
- spaces and fixed point theorems, Acad. Roy.
- Belg. Bull. Cl. Sci., (5) T.VI (1995), 81-89.[7] Ciric, Lj. B., On some non-expansive type
- mappings and fixed points, Indian J. Pure Appl.
- Math., 24(3), (1993), 145-149.
- Ciric, Lj. B., Ume, J.S., and Jesic, S.N, On
- random coincidence and fixed points for a pair
- of multi-valued and single-valued mappings, J.
- Ineq. Appl., Vol. 2006(2006), Article ID 81045,
- pages.
- Ciric Lj. B. and Ume J. S., Some common fixed
- point theorems for weakly compatible
- mappings, J. Math. Anal. Appl. 314 (2) (2006),
- -499.
- Gregus, M., A fixed point theorem in Banach
- spaces, Boll. Un. Mat. Ital..A, 5(1980), 193-198.
- Hans, O., Random operator equations, Proc. 4th
- Berkeley Symp. Mathematics Statistics and
- Probability, Vol. II, Part I, pp. 185-202. Univer-
- sity of California Press, Berkeley (1961).
- Hans, O., Reduzierende Zufallige transformati-
- onen, Czech. Math. J. 7(1957), 154-158.
- Himmelberg, C.J., Measurable relations. Fund.
- Math. 87(1975), 53-72.
- Huang, N.J., A principle of randomization of
- coincidence points with applications, Applied
- Math. Lett., 12(1999), 107-113.
- Itoh, S., A random fixed point theorem for
- multi-valued contraction mapping, Pacific J.
- Math., 68(1977), 85-90.
- Jhade, P.K., Saluja, A.S., On Random Coincid-
- ence & Fixed Points for a Pair of Multi-Valued
- & Single-Valued Mappings, Inter. J. Ana. and
- Appl., Vol.4, No.1 (2014), 26-35.
- Kubiak, T., Fixed point theorems for contractive
- type multi-valued mappings, Math. Japonica,
- (1985), 89-101.
- Kuratowski, K., Ryll-Nardzewski, C., A general
- theorem on selectors, Bull. Acad. Polon. Sci.
- Ser. Sci. Math. Astronom. Phys., 13(1965), 397-
- Liu, T.C., Random approximations and random
- fixed points for non-self maps, Proc. Amer.
- Math. Soc., 103(1988), 1129-1135.
- Papageorgiou, N. S., Random fixed point theo-
- rems for measurable multifunctions in Banach
- spaces, Proc. Amer. Math. Soc., 97(1986), 507-
- Papageorgiou, N.S., Random fixed point
- theorems for multifunctions, Math. Japonica,
- (1984), 93-106.
- Rhoades, B.E., A generalization of a fixed point
- theorem of Bogin, Math. Sem. Notes, 6(1987),
- -7.
- Rhoades, B.E., Singh, S.L., Kulshrestha, C.,
- Coincidence theorems for some multi-valued
- mappings, Internat. J. Math. Math. Sci.,
- (1984), 429-434.
- Rockafellar, R.T., Measurable dependence of
- convex sets and functions in parameters, J.
- Math. Anal. Appl.,28(1969), 4-25.
- Sehgal, V.M., Singh, S.P., On random
- approxima-tions and a random fixed point
- theorem for set valued mappings, Proc. Amer.
- Math. Soc., 95 (1985), 91-94.
- Shahzad, N. Latif, A., A random coincidence
- point theorem, J. Math. Anal. Appl., 245 (2000),
- -638.
- Shahzad, N., Hussain, N. Deterministic and
- random coincidence point results for - non
- expansive maps, J. Math. Anal. Appl., 323
- (2006), No. 2, 1038-1046.
- Singh, S.L. Mishra, S.N., On a Ljubomir Ciric's
- fixed point theorem for nonexpansive type maps
- with applications, Indian J. Pure Appl. Math.,
- (2002), no. 4, 531-542.
- Spacek, A., Zufallige Gleichungen, Czech Math.
- J., 5(1955), 462-466.
- Tan, K.K., Yuan, X.Z., Huang, N.J., Random
- fixed point theorems and approximations in
- cones, J. Math. Anal. Appl., 185(1994), 378-
- Wagner D. H., Survey of measurable selection
- theorems, SIAM, J, Control Optim., 15, (1977),
- -903.
- Hadzic, O., A random fixed point theorem for
- multi valued mappings of Ciric’s type. Mat.
- Vesnik 3 (16) (31) (1979), no. 4, 397–401.
- Kubiaczyk I., Some fixed point theorems,
- Demonstratio Math. 6 (1976), 507-515.
- Kubiak T., Fixed point theorems for contractive
- type multi-valued mappings, Math. Japonica, 30
- (1985), 89-101.
- Ray B. K., On Ciric’s fixed point theorem,
- Fund. Math. 94 (1977), 221-229.
Yıl 2017,
Cilt: 30 Sayı: 1, 269 - 281, 14.03.2017
Umesh Dongre
R. D. Daheriya
Manoj Ughade
,
Bhawna Parkhey
Kaynakça
- Bharucha-Ried, A.T., Fixed point theorem in
- probabilistic analysis, Bull. Amer. Math. Soc.,
- (1976), 641-645.
- Bogin, J., A generalization of a fixed point theo-
- rem og Gebel, Kirk and Shimi, Canad. Math.
- Bull., 19(1976), 7-12.
- Chandra, M., Mishra, S., Singh, S., Rhoades,
- B.E., Coincidence and fixed points of non-
- expansive type multi-valued and single-valued
- maps, Indian J. Pure Appl. Math.,26(5):393-
- ,1995.
- Chang, S.S., Huang, N.J., On the principle of
- randomization of fixed points for set valued
- mappings with applications, North-eastern
- Math. J., 7(1991), 486-491.
- Ciric, Lj. B., Non-expansive type mappings and
- a fixed point theorem in convex metric spaces,
- Rend. Accad. Naz. Sci. XL Mem. Mat., (5)
- vol.XIX (1995), 263-271.
- Ciric, Lj. B., On some mappings in metric
- spaces and fixed point theorems, Acad. Roy.
- Belg. Bull. Cl. Sci., (5) T.VI (1995), 81-89.[7] Ciric, Lj. B., On some non-expansive type
- mappings and fixed points, Indian J. Pure Appl.
- Math., 24(3), (1993), 145-149.
- Ciric, Lj. B., Ume, J.S., and Jesic, S.N, On
- random coincidence and fixed points for a pair
- of multi-valued and single-valued mappings, J.
- Ineq. Appl., Vol. 2006(2006), Article ID 81045,
- pages.
- Ciric Lj. B. and Ume J. S., Some common fixed
- point theorems for weakly compatible
- mappings, J. Math. Anal. Appl. 314 (2) (2006),
- -499.
- Gregus, M., A fixed point theorem in Banach
- spaces, Boll. Un. Mat. Ital..A, 5(1980), 193-198.
- Hans, O., Random operator equations, Proc. 4th
- Berkeley Symp. Mathematics Statistics and
- Probability, Vol. II, Part I, pp. 185-202. Univer-
- sity of California Press, Berkeley (1961).
- Hans, O., Reduzierende Zufallige transformati-
- onen, Czech. Math. J. 7(1957), 154-158.
- Himmelberg, C.J., Measurable relations. Fund.
- Math. 87(1975), 53-72.
- Huang, N.J., A principle of randomization of
- coincidence points with applications, Applied
- Math. Lett., 12(1999), 107-113.
- Itoh, S., A random fixed point theorem for
- multi-valued contraction mapping, Pacific J.
- Math., 68(1977), 85-90.
- Jhade, P.K., Saluja, A.S., On Random Coincid-
- ence & Fixed Points for a Pair of Multi-Valued
- & Single-Valued Mappings, Inter. J. Ana. and
- Appl., Vol.4, No.1 (2014), 26-35.
- Kubiak, T., Fixed point theorems for contractive
- type multi-valued mappings, Math. Japonica,
- (1985), 89-101.
- Kuratowski, K., Ryll-Nardzewski, C., A general
- theorem on selectors, Bull. Acad. Polon. Sci.
- Ser. Sci. Math. Astronom. Phys., 13(1965), 397-
- Liu, T.C., Random approximations and random
- fixed points for non-self maps, Proc. Amer.
- Math. Soc., 103(1988), 1129-1135.
- Papageorgiou, N. S., Random fixed point theo-
- rems for measurable multifunctions in Banach
- spaces, Proc. Amer. Math. Soc., 97(1986), 507-
- Papageorgiou, N.S., Random fixed point
- theorems for multifunctions, Math. Japonica,
- (1984), 93-106.
- Rhoades, B.E., A generalization of a fixed point
- theorem of Bogin, Math. Sem. Notes, 6(1987),
- -7.
- Rhoades, B.E., Singh, S.L., Kulshrestha, C.,
- Coincidence theorems for some multi-valued
- mappings, Internat. J. Math. Math. Sci.,
- (1984), 429-434.
- Rockafellar, R.T., Measurable dependence of
- convex sets and functions in parameters, J.
- Math. Anal. Appl.,28(1969), 4-25.
- Sehgal, V.M., Singh, S.P., On random
- approxima-tions and a random fixed point
- theorem for set valued mappings, Proc. Amer.
- Math. Soc., 95 (1985), 91-94.
- Shahzad, N. Latif, A., A random coincidence
- point theorem, J. Math. Anal. Appl., 245 (2000),
- -638.
- Shahzad, N., Hussain, N. Deterministic and
- random coincidence point results for - non
- expansive maps, J. Math. Anal. Appl., 323
- (2006), No. 2, 1038-1046.
- Singh, S.L. Mishra, S.N., On a Ljubomir Ciric's
- fixed point theorem for nonexpansive type maps
- with applications, Indian J. Pure Appl. Math.,
- (2002), no. 4, 531-542.
- Spacek, A., Zufallige Gleichungen, Czech Math.
- J., 5(1955), 462-466.
- Tan, K.K., Yuan, X.Z., Huang, N.J., Random
- fixed point theorems and approximations in
- cones, J. Math. Anal. Appl., 185(1994), 378-
- Wagner D. H., Survey of measurable selection
- theorems, SIAM, J, Control Optim., 15, (1977),
- -903.
- Hadzic, O., A random fixed point theorem for
- multi valued mappings of Ciric’s type. Mat.
- Vesnik 3 (16) (31) (1979), no. 4, 397–401.
- Kubiaczyk I., Some fixed point theorems,
- Demonstratio Math. 6 (1976), 507-515.
- Kubiak T., Fixed point theorems for contractive
- type multi-valued mappings, Math. Japonica, 30
- (1985), 89-101.
- Ray B. K., On Ciric’s fixed point theorem,
- Fund. Math. 94 (1977), 221-229.