BibTex RIS Cite

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES

Year 2017, Volume: 30 Issue: 1, 363 - 370, 14.03.2017

Abstract

In this paper, a known theorem on $\left|\bar{N},p_{n}\right|_{k}$ summability factors of infinite series have been generalized for $\varphi-\left|A,p_{n}\right|_{k}$ summability factors. Using this theorem, some new results dealing with Fourier series have been obtained.

References

  • bibitem{Hb}Bor, H., ''On two summability methods'', Math. Proc. Cambridge Philos. Soc., 97:147-149, (1985).
  • bibitem{HB} Bor, H., ''Multipliers for $|bar{N},p_{n}|_{k}$ summability of Fourier series'', Bull. Inst. Math. Acad.
  • Sinica, 17:285-290, (1989).
  • bibitem{bor1991b} Bor, H., ''On the relative strength of two absolute summability methods'', Proc. Amer.
  • Math. Soc., 113:1009-1012, (1991).
  • bibitem{Boo} Bor, H., ''Some new results on infinite series and Fourier series'', Positivity, 19:467-473, (2015).
  • bibitem{HBr2} Bor, H., ''Some new results on absolute Riesz summability of infinite series and Fourier series'', Positivity, 20:599-605, (2016).
  • bibitem{Fl} Flett, T. M., ''On an extension of absolute summability and some theorems of Littlewood and Paley'', Proc. Lond. Math. Soc., 7:113-141, (1957).
  • bibitem{Ha} Hardy, G. H., Divergent Series, Oxford University Press, Oxford (1949).
  • bibitem{Mi} Mishra, K. N., ''Multipliers for $|bar{N},p_{n}|$ summability of Fourier series'', Bull. Inst. Math. Acad. Sinica, 14:431-438, (1986).
  • bibitem{HK} "{O}zarslan, H. S. and "{O}u{g}d"{u}k, H. N., ''Generalizations of two theorems on absolute summability methods'', Aust. J. Math. Anal. Appl., 13:7pp., (2004).
  • bibitem{ozarslanyildiz1} "{O}zarslan, H. S. and Y{i}ld{i}z, c{S}., ''Local properties of absolute matrix summability of factored Fourier series'', Filomat, (2016) (in press).
  • bibitem{ozarslanyildiz} "{O}zarslan, H. S. and Y{i}ld{i}z, c{S}., ''A new study on the absolute summability factors of Fourier series'', J. Math. Anal., 7:31-36, (2016).
  • bibitem{yildiz2} Y{i}ld{i}z, c{S}., ''A new theorem on absolute matrix summability of Fourier series'', Pub. De Inst. Math., (2016) (in press).
  • bibitem{Su} Sulaiman, W. T., ''Inclusion theorems for absolute matrix summability methods of an infinite series'', IV, Indian J. Pure Appl. Math., 34 (11):1547-1557, (2003).
Year 2017, Volume: 30 Issue: 1, 363 - 370, 14.03.2017

Abstract

References

  • bibitem{Hb}Bor, H., ''On two summability methods'', Math. Proc. Cambridge Philos. Soc., 97:147-149, (1985).
  • bibitem{HB} Bor, H., ''Multipliers for $|bar{N},p_{n}|_{k}$ summability of Fourier series'', Bull. Inst. Math. Acad.
  • Sinica, 17:285-290, (1989).
  • bibitem{bor1991b} Bor, H., ''On the relative strength of two absolute summability methods'', Proc. Amer.
  • Math. Soc., 113:1009-1012, (1991).
  • bibitem{Boo} Bor, H., ''Some new results on infinite series and Fourier series'', Positivity, 19:467-473, (2015).
  • bibitem{HBr2} Bor, H., ''Some new results on absolute Riesz summability of infinite series and Fourier series'', Positivity, 20:599-605, (2016).
  • bibitem{Fl} Flett, T. M., ''On an extension of absolute summability and some theorems of Littlewood and Paley'', Proc. Lond. Math. Soc., 7:113-141, (1957).
  • bibitem{Ha} Hardy, G. H., Divergent Series, Oxford University Press, Oxford (1949).
  • bibitem{Mi} Mishra, K. N., ''Multipliers for $|bar{N},p_{n}|$ summability of Fourier series'', Bull. Inst. Math. Acad. Sinica, 14:431-438, (1986).
  • bibitem{HK} "{O}zarslan, H. S. and "{O}u{g}d"{u}k, H. N., ''Generalizations of two theorems on absolute summability methods'', Aust. J. Math. Anal. Appl., 13:7pp., (2004).
  • bibitem{ozarslanyildiz1} "{O}zarslan, H. S. and Y{i}ld{i}z, c{S}., ''Local properties of absolute matrix summability of factored Fourier series'', Filomat, (2016) (in press).
  • bibitem{ozarslanyildiz} "{O}zarslan, H. S. and Y{i}ld{i}z, c{S}., ''A new study on the absolute summability factors of Fourier series'', J. Math. Anal., 7:31-36, (2016).
  • bibitem{yildiz2} Y{i}ld{i}z, c{S}., ''A new theorem on absolute matrix summability of Fourier series'', Pub. De Inst. Math., (2016) (in press).
  • bibitem{Su} Sulaiman, W. T., ''Inclusion theorems for absolute matrix summability methods of an infinite series'', IV, Indian J. Pure Appl. Math., 34 (11):1547-1557, (2003).
There are 15 citations in total.

Details

Journal Section Mathematics
Authors

Şebnem Yıldız

Publication Date March 14, 2017
Published in Issue Year 2017 Volume: 30 Issue: 1

Cite

APA Yıldız, Ş. (2017). ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES. Gazi University Journal of Science, 30(1), 363-370.
AMA Yıldız Ş. ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES. Gazi University Journal of Science. March 2017;30(1):363-370.
Chicago Yıldız, Şebnem. “ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES”. Gazi University Journal of Science 30, no. 1 (March 2017): 363-70.
EndNote Yıldız Ş (March 1, 2017) ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES. Gazi University Journal of Science 30 1 363–370.
IEEE Ş. Yıldız, “ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES”, Gazi University Journal of Science, vol. 30, no. 1, pp. 363–370, 2017.
ISNAD Yıldız, Şebnem. “ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES”. Gazi University Journal of Science 30/1 (March 2017), 363-370.
JAMA Yıldız Ş. ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES. Gazi University Journal of Science. 2017;30:363–370.
MLA Yıldız, Şebnem. “ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES”. Gazi University Journal of Science, vol. 30, no. 1, 2017, pp. 363-70.
Vancouver Yıldız Ş. ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AND FOURIER SERIES. Gazi University Journal of Science. 2017;30(1):363-70.