BibTex RIS Kaynak Göster

COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS

Yıl 2017, Cilt: 30 Sayı: 2, 159 - 172, 19.06.2017

Öz

In this paper, we obtain the existence of some common best proximity
point theorems for generalized Lipschitz contractive mappings on cone b-metric space over Banach algebra without assumption of normality. Our results generalize the corresponding result by Xu and Radenovic (Fixed Point Theory and Appl. 2014, 2014:102) and by Huang and Radenovic ( J. Computational Anal. and Appl. 2016, 20(3)). Further, we give an example to illustrate that our works are never equivalent with the counterparts in the literature.

Kaynakça

  • Huang, L-G, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math.
  • Anal. Appl. 332, 1468-1476 (2007)
  • Jiang, S, Li, Z: Extensions of Banach contraction principle to partial cone metric spaces over a nonnormal
  • solid cone. Fixed Point Theory Appl. 2013, 250 (2013)
  • Al-Khaleel, M, Al-Sharifa, S, Khandaqji, M: Fixed points for contraction mappings in generalized cone
  • metric spaces. Jordan J. Math. Stat. 5(4), 291-307 (2012)
  • Gajic, L, Rako cevi c, V: Quasi-contractions on a nonnormal cone metric space. Funct. Anal. Appl.
  • (1), 75-79 (2012)
  • Jankovic, S, Kadelburg, Z, Radenovic, S: On the cone metric space: a survey. Nonlinear Anal. 74,
  • -2601 (2011)
  • Cakall, H, Snmez, A, Gen, : On an equivalence of topological vector space valued cone metric spaces
  • and metric spaces. Appl. Math. Lett. 25, 429-433 (2012)
  • Kadelburg, Z, Radenovic, S, Rako cevi c, V: A note on the equivalence of some metric and cone
  • metric fixed point results. Appl. Math. Lett. 24, 370-374 (2011)
  • Feng, Y, Mao, W: The equivalence of cone metric spaces and metric spaces. Fixed Point Theory 11(2),
  • -264 (2010)
  • Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized
  • Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)
  • Rudin, W: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
  • Kadelburg, Z, Radenovic, S: A note on various types of cones and fixed point results in cone metric
  • spaces. Asian J. Math. Appl. 2013, Article ID ama0104 (2013)
  • Xu S.-Y.,Radenovic S.: Fixed point theorems of generalized Lipschitz mappings on cone metric spaces
  • over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014, 2014: 102.
  • Kumam P., Dung N. V., Hang V.-T.-L.: Some equivalence between cone b-metric spaces and b-metric
  • spaces, Abstr. Appl. Anal., 2013, Article ID 573740, 8 pages, 2013.
  • Huang H.-P.,Xu S.-Y.: Fixed point theorems of contractive mappings in cone b-metric spaces and
  • applications, Fixed Point Theory Appl., 2013, 2013: 112.
  • Azam A., Mehmood N., Ahmad J., Radenovic S.: Multivalued fixed point theorems in cone b-metric
  • spaces, Fixed Point Theory Appl., 2013, 2013: 582.
  • Huang H., Radenovic S. :Some fixed point results of generalized Lipschitz mappings on cone b-metric
  • spaces over Banach algebras, J. Computational Aanl. and Appl., 20(3), 2016, 566-583.
  • Huang H., Xu S., Liu H., Radenovic S: Fixed point theorems and T-stability of Picard iteration for
  • generalized Lipschitz mappings in cone metric spaces over Banach algebras, J. Computational Aanl. and
  • Appl., 20(5), 2016, 869-888.
Yıl 2017, Cilt: 30 Sayı: 2, 159 - 172, 19.06.2017

Öz

Kaynakça

  • Huang, L-G, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math.
  • Anal. Appl. 332, 1468-1476 (2007)
  • Jiang, S, Li, Z: Extensions of Banach contraction principle to partial cone metric spaces over a nonnormal
  • solid cone. Fixed Point Theory Appl. 2013, 250 (2013)
  • Al-Khaleel, M, Al-Sharifa, S, Khandaqji, M: Fixed points for contraction mappings in generalized cone
  • metric spaces. Jordan J. Math. Stat. 5(4), 291-307 (2012)
  • Gajic, L, Rako cevi c, V: Quasi-contractions on a nonnormal cone metric space. Funct. Anal. Appl.
  • (1), 75-79 (2012)
  • Jankovic, S, Kadelburg, Z, Radenovic, S: On the cone metric space: a survey. Nonlinear Anal. 74,
  • -2601 (2011)
  • Cakall, H, Snmez, A, Gen, : On an equivalence of topological vector space valued cone metric spaces
  • and metric spaces. Appl. Math. Lett. 25, 429-433 (2012)
  • Kadelburg, Z, Radenovic, S, Rako cevi c, V: A note on the equivalence of some metric and cone
  • metric fixed point results. Appl. Math. Lett. 24, 370-374 (2011)
  • Feng, Y, Mao, W: The equivalence of cone metric spaces and metric spaces. Fixed Point Theory 11(2),
  • -264 (2010)
  • Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized
  • Lipschitz mappings. Fixed Point Theory Appl. 2013, 320 (2013)
  • Rudin, W: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
  • Kadelburg, Z, Radenovic, S: A note on various types of cones and fixed point results in cone metric
  • spaces. Asian J. Math. Appl. 2013, Article ID ama0104 (2013)
  • Xu S.-Y.,Radenovic S.: Fixed point theorems of generalized Lipschitz mappings on cone metric spaces
  • over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014, 2014: 102.
  • Kumam P., Dung N. V., Hang V.-T.-L.: Some equivalence between cone b-metric spaces and b-metric
  • spaces, Abstr. Appl. Anal., 2013, Article ID 573740, 8 pages, 2013.
  • Huang H.-P.,Xu S.-Y.: Fixed point theorems of contractive mappings in cone b-metric spaces and
  • applications, Fixed Point Theory Appl., 2013, 2013: 112.
  • Azam A., Mehmood N., Ahmad J., Radenovic S.: Multivalued fixed point theorems in cone b-metric
  • spaces, Fixed Point Theory Appl., 2013, 2013: 582.
  • Huang H., Radenovic S. :Some fixed point results of generalized Lipschitz mappings on cone b-metric
  • spaces over Banach algebras, J. Computational Aanl. and Appl., 20(3), 2016, 566-583.
  • Huang H., Xu S., Liu H., Radenovic S: Fixed point theorems and T-stability of Picard iteration for
  • generalized Lipschitz mappings in cone metric spaces over Banach algebras, J. Computational Aanl. and
  • Appl., 20(5), 2016, 869-888.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Bölüm Mathematics
Yazarlar

Seyed Masoud Aghayan Bu kişi benim

Ahmad Zireh

Ali Ebadian

Yayımlanma Tarihi 19 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 30 Sayı: 2

Kaynak Göster

APA Aghayan, S. M., Zireh, A., & Ebadian, A. (2017). COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS. Gazi University Journal of Science, 30(2), 159-172.
AMA Aghayan SM, Zireh A, Ebadian A. COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS. Gazi University Journal of Science. Haziran 2017;30(2):159-172.
Chicago Aghayan, Seyed Masoud, Ahmad Zireh, ve Ali Ebadian. “COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS”. Gazi University Journal of Science 30, sy. 2 (Haziran 2017): 159-72.
EndNote Aghayan SM, Zireh A, Ebadian A (01 Haziran 2017) COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS. Gazi University Journal of Science 30 2 159–172.
IEEE S. M. Aghayan, A. Zireh, ve A. Ebadian, “COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS”, Gazi University Journal of Science, c. 30, sy. 2, ss. 159–172, 2017.
ISNAD Aghayan, Seyed Masoud vd. “COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS”. Gazi University Journal of Science 30/2 (Haziran 2017), 159-172.
JAMA Aghayan SM, Zireh A, Ebadian A. COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS. Gazi University Journal of Science. 2017;30:159–172.
MLA Aghayan, Seyed Masoud vd. “COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS”. Gazi University Journal of Science, c. 30, sy. 2, 2017, ss. 159-72.
Vancouver Aghayan SM, Zireh A, Ebadian A. COMMON BEST PROXIMITY POINT THEOREMS ON CONE B-METRIC SPACES OVER BANACH ALGEBRAS. Gazi University Journal of Science. 2017;30(2):159-72.