Araştırma Makalesi
BibTex RIS Kaynak Göster

Examination of Zinc Electrode Performance in Microbial Fuel Cells

Yıl 2017, Cilt: 30 Sayı: 4, 395 - 402, 11.12.2017

Öz



Microbial fuel cells are one
of the systems of renewable and clean energy generating. One of the most
important things in microbial fuel cells is bacterial growth. Composts rich in
organic substances are commonly used in microbial fuel cells because they
positively affect bacterial growth. In addition, in recent years, studies on
the use of non-inert (metal etc.) electrodes have increased; while inert
(usually carbon based etc.) electrodes are generally used in microbial fuel
cells. The objective of this study is to evaluate zinc anode performance by
using microbial fuel cells mixed with compost. Experiments were carried out in microbial
fuel cell equipped with zinc anode electrode and graphite cathode electrode.
According to experiments, zinc is a suitable anode electrode of that utilizes
electrochemical and biochemical reactions and therefore the microbial fuel cell
produces high power density (5.33 W/m2). Zinc, which has a good
electrochemical and biochemical performance, undergoes corrosion. But,
according to measurements and calculations made on the basis of literature the
anode zinc electrode used in this study is located in the category of
corrosion-resistant material. The zinc anode for microbial fuel cells is the
promising electrode technology. The experiments; the microbial fuel cell in this
study, electrolyte, electrode, biofuel source, biocatalyst, etc. shows that the
parameters work in harmony.






Kaynakça

  • Ersan, K., Ar, I., Tukek, S. “Effect of Humidification of Gases on First Home Constructed PEM Fuel Cell Stack Potential”, Gazi University Journal of Science, 23(1), 61-69, (2010).
  • Çek, N. “Parçacıklar ve Enerji Kaynakları”, Lambert Academic Publishing, Saarbrucken, Germany, (2016).
  • Çek, N. “Biofuel cell design with moss”, 10th International Clean Energy Symposium, Istanbul, Turkey, pp. 182-193, (2016).
  • Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y. “Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials”, Chemical Engineering Journal. 229, 364-370, (2013).
  • Das, M.P. “Bioelectricity production using algae in microbial fuel cell”. Der Pharma Chemica, 7(11), 8-10, (2015).
  • Khudzari, J.M., Tartakovsky, B., Raghavan, G.S.V. “Effect of C/N ratio and salinity on power generation in compost microbial fuel cells”, Waste Management, 48, 135-142, (2016).
  • Moqsud, M.A., Yoshitake, J., Bushra, Q.S., Hyodo, M., Omine, K., Strik, D. “Compost in plant microbial fuel cell for bioelectricity generation”, Waste Management, 36, 63-69, (2015).
  • Madan, G. “S.Chands Success Guide (Q&A) Inorganic Chemistry”, S. Chand Publishing, Delhi, India, (2005).
  • Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., Zhang, J. “Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management”, Soil Biology&Biochemistry, 39, 2971-2976, (2007).
  • Khan, N., Clark, I., Bolan, N., Meier, S., Saint, C.P., Sánchez-Monedero, M.A., Shea, S., Lehmann, J., Qiu, R. “Development of a buried bag technique to study biochars incorporated in a compost or composting medium” Journal of Soils Sediments. 17:656-664, (2017).
  • Karra, U., Manickam, S. S., McCutcheon, J. R., Patel, N., Li, B. “Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs)”, International Journal of Hydrogen Energy, 38, 1588-1597, (2013).
  • Zuo, R. “Biofilms: strategies for metal corrosion inhibition employing microorganisms”, Applied Microbiology and Biotechnology, 76, 1245-1253, (2007).
  • Yu, Z., Zhang, J., Zhao, X., Zhao, X., Duan, J., Song, X. “Effects of Microorganism on Corrosion Performance of Zinc in Natural Seawater”, International Journal of Electrochemical Science, 9, 7587-7595, (2014).
  • Juzeliunas, E., Ramanauskas, R., Lugauskas, A., Leinartas, K., Samulevicene, M., Sudavicius, A. “Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection”, Electrochimica Acta, 51, 6085-6090, (2006).
  • Maruthamuthu, S., Nagendran, T., Anandkumar, B., Karthikeyan, M.S., Palaniswamy, N., Narayanan, G. “Microbiologically influenced corrosion on rails”, Current Science, 100, 870-881, (2011).
  • Ammal, P.R., Prajila, M., Joseph, A. “Physicochemical studies on the inhibitive properties of a 1,2,4-triazole Schiff’s base, HMATD, on the corrosion of mild steel in hydrochloric acid”, Egyptian Journal of Petroleum, (2017) (in press).
  • Tribak, Z., Haoudi, A., Skalli, M.K., Rodi, Y.K., El Azzouzi, M., Aouniti, A., Hammouti, B., Senhaji, O. “5-Chloro-1H-indole-2,3-dione derivative as corrosion inhibitor for mild steel in 1M H3PO4: weight loss, electrochemical and SEM studies”, Journal of Materials and Environmental Sciences, 8, 298-309, (2017).
  • Ghantous, R.M., Poyet, S., L'Hostis, V., Tran, N-C., François, R. “Effect of crack openings on carbonation-induced Corrosion”, Cement and Concrete Research, 95, 257-269, (2017).
  • Biyikoğlu, A. and Alpat, C.Ö. “Parametric Study of A Single Cell Proton Exchange Membrane Fuel Cell For A Bundle of Straight Gas Channels”, Gazi University Journal of Science, 24(4), 883-899, (2011).
  • Marcus, A.K., Torres, C.I., Rittmann, B.E. “Conduction-Based Modeling of the Biofilm Anode of a Microbial Fuel Cell”, Biotechnology and Bioengineering, 98(6), 1171-1182, (2007).
  • Yang, J., Yang, H., Yu, H., Wang, W., Zeng, X. “Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution”, Metallurgical and Materials Transactions A. 48:3583-3593, (2017).
  • Chen, C-Y., Chen, T-Y., Chung, Y-C. “A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes”, Environmental Technology, 35, 286-293, (2014).
  • Du, H., Fusheng, L. “Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge”, Journal of Cleaner Production, 143, 336-344, (2017).
Yıl 2017, Cilt: 30 Sayı: 4, 395 - 402, 11.12.2017

Öz

Kaynakça

  • Ersan, K., Ar, I., Tukek, S. “Effect of Humidification of Gases on First Home Constructed PEM Fuel Cell Stack Potential”, Gazi University Journal of Science, 23(1), 61-69, (2010).
  • Çek, N. “Parçacıklar ve Enerji Kaynakları”, Lambert Academic Publishing, Saarbrucken, Germany, (2016).
  • Çek, N. “Biofuel cell design with moss”, 10th International Clean Energy Symposium, Istanbul, Turkey, pp. 182-193, (2016).
  • Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y. “Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials”, Chemical Engineering Journal. 229, 364-370, (2013).
  • Das, M.P. “Bioelectricity production using algae in microbial fuel cell”. Der Pharma Chemica, 7(11), 8-10, (2015).
  • Khudzari, J.M., Tartakovsky, B., Raghavan, G.S.V. “Effect of C/N ratio and salinity on power generation in compost microbial fuel cells”, Waste Management, 48, 135-142, (2016).
  • Moqsud, M.A., Yoshitake, J., Bushra, Q.S., Hyodo, M., Omine, K., Strik, D. “Compost in plant microbial fuel cell for bioelectricity generation”, Waste Management, 36, 63-69, (2015).
  • Madan, G. “S.Chands Success Guide (Q&A) Inorganic Chemistry”, S. Chand Publishing, Delhi, India, (2005).
  • Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., Zhang, J. “Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management”, Soil Biology&Biochemistry, 39, 2971-2976, (2007).
  • Khan, N., Clark, I., Bolan, N., Meier, S., Saint, C.P., Sánchez-Monedero, M.A., Shea, S., Lehmann, J., Qiu, R. “Development of a buried bag technique to study biochars incorporated in a compost or composting medium” Journal of Soils Sediments. 17:656-664, (2017).
  • Karra, U., Manickam, S. S., McCutcheon, J. R., Patel, N., Li, B. “Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs)”, International Journal of Hydrogen Energy, 38, 1588-1597, (2013).
  • Zuo, R. “Biofilms: strategies for metal corrosion inhibition employing microorganisms”, Applied Microbiology and Biotechnology, 76, 1245-1253, (2007).
  • Yu, Z., Zhang, J., Zhao, X., Zhao, X., Duan, J., Song, X. “Effects of Microorganism on Corrosion Performance of Zinc in Natural Seawater”, International Journal of Electrochemical Science, 9, 7587-7595, (2014).
  • Juzeliunas, E., Ramanauskas, R., Lugauskas, A., Leinartas, K., Samulevicene, M., Sudavicius, A. “Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection”, Electrochimica Acta, 51, 6085-6090, (2006).
  • Maruthamuthu, S., Nagendran, T., Anandkumar, B., Karthikeyan, M.S., Palaniswamy, N., Narayanan, G. “Microbiologically influenced corrosion on rails”, Current Science, 100, 870-881, (2011).
  • Ammal, P.R., Prajila, M., Joseph, A. “Physicochemical studies on the inhibitive properties of a 1,2,4-triazole Schiff’s base, HMATD, on the corrosion of mild steel in hydrochloric acid”, Egyptian Journal of Petroleum, (2017) (in press).
  • Tribak, Z., Haoudi, A., Skalli, M.K., Rodi, Y.K., El Azzouzi, M., Aouniti, A., Hammouti, B., Senhaji, O. “5-Chloro-1H-indole-2,3-dione derivative as corrosion inhibitor for mild steel in 1M H3PO4: weight loss, electrochemical and SEM studies”, Journal of Materials and Environmental Sciences, 8, 298-309, (2017).
  • Ghantous, R.M., Poyet, S., L'Hostis, V., Tran, N-C., François, R. “Effect of crack openings on carbonation-induced Corrosion”, Cement and Concrete Research, 95, 257-269, (2017).
  • Biyikoğlu, A. and Alpat, C.Ö. “Parametric Study of A Single Cell Proton Exchange Membrane Fuel Cell For A Bundle of Straight Gas Channels”, Gazi University Journal of Science, 24(4), 883-899, (2011).
  • Marcus, A.K., Torres, C.I., Rittmann, B.E. “Conduction-Based Modeling of the Biofilm Anode of a Microbial Fuel Cell”, Biotechnology and Bioengineering, 98(6), 1171-1182, (2007).
  • Yang, J., Yang, H., Yu, H., Wang, W., Zeng, X. “Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution”, Metallurgical and Materials Transactions A. 48:3583-3593, (2017).
  • Chen, C-Y., Chen, T-Y., Chung, Y-C. “A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes”, Environmental Technology, 35, 286-293, (2014).
  • Du, H., Fusheng, L. “Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge”, Journal of Cleaner Production, 143, 336-344, (2017).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Materials Engineering
Yazarlar

Nurettin Çek

Yayımlanma Tarihi 11 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 30 Sayı: 4

Kaynak Göster

APA Çek, N. (2017). Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science, 30(4), 395-402.
AMA Çek N. Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science. Aralık 2017;30(4):395-402.
Chicago Çek, Nurettin. “Examination of Zinc Electrode Performance in Microbial Fuel Cells”. Gazi University Journal of Science 30, sy. 4 (Aralık 2017): 395-402.
EndNote Çek N (01 Aralık 2017) Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science 30 4 395–402.
IEEE N. Çek, “Examination of Zinc Electrode Performance in Microbial Fuel Cells”, Gazi University Journal of Science, c. 30, sy. 4, ss. 395–402, 2017.
ISNAD Çek, Nurettin. “Examination of Zinc Electrode Performance in Microbial Fuel Cells”. Gazi University Journal of Science 30/4 (Aralık 2017), 395-402.
JAMA Çek N. Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science. 2017;30:395–402.
MLA Çek, Nurettin. “Examination of Zinc Electrode Performance in Microbial Fuel Cells”. Gazi University Journal of Science, c. 30, sy. 4, 2017, ss. 395-02.
Vancouver Çek N. Examination of Zinc Electrode Performance in Microbial Fuel Cells. Gazi University Journal of Science. 2017;30(4):395-402.