Research Article
BibTex RIS Cite

The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets

Year 2019, Volume: 32 Issue: 3, 991 - 1006, 01.09.2019
https://doi.org/10.35378/gujs.434646

Abstract

Interval valued intuitionistic fuzzy set (IVFS) as an extension of intuitionistic fuzzy sets is described by two parameters, namely membership degree and non-membership degree which are expressed in terms of intervals rather than crisp numbers. IVFS can be used to handle uncertainty and vagueness in real world decision making problems and operators of IVFSs have a key role in this filed. Thus, in this work we define newly defined modal operators over generalized interval valued intuitionistic fuzzy sets by modifying the existing operators. The new proposed operators are the integrity and comprehensive. Then, we describe the desirable properties of the proposed operators and discuss the special cases of them in details. Furthermore, the relationship between operators is examined. Finally, an illustrative example is provided for comparison.

References

  • [1] Ahn J. Y., Han K. S., Oh S. Y., Lee C. D. (2011) An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache, International Journal of Innovative Computing, Information and Control, 7(5), 2755-2762.[2] Ananthi V. P., Balasubramaniam P. (2015) Image fusion using interval-valued intuitionistic fuzzy sets, International Journal Image Data Fusion, 6, 249–269.[3] Atanassov K. T., Gargov G. (1989) Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(3), 343-349.[4] Atanassov K. T. (1994) Operations over interval valued fuzzy set, Fuzzy Sets and Systems, 64, 159-174.[5] Atanassov K. T. (1989) More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33, 37-45.[6] Bai Z. (2013) An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function, The Scientific World Journal, Volume 2013, Article ID 879089, 6 pages.[7] Baloui Jamkhaneh E., Nadarajah S. (2015) A New generalized intuitionistic fuzzy sets, Hacettepe Journal of Mathematics and Statistics, 44 (6) , 1537 – 1551.[8] Baloui Jamkhaneh E. (2015) New generalized interval value intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences, 5(1), 33-46.[9] Baloui Jamkhaneh E. (2016) New operations over generalized interval valued intuitionistic fuzzy sets, Gazi University Journal of Science, 29(3), 667-674. [10] Baloui Jamkhaneh E., Nadi Ghara A. (2017) Four new operators over generalized intuitionistic fuzzy sets, Journal of New Theory, 18, 12-21. [11] Baloui Jamkhaneh E., Amirzadi Arezoo (2017) New operators over the generalized interval valued intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences, 8(2), 81-94.[12] Baloui Jamkhaneh E. (2017a) The operators over the generalized intuitionistic fuzzy sets, International Journal Nonlinear Analysis and Applications, 8 (1), 11-21. [13] Baloui Jamkhaneh E. (2017b) On the modal operators over the generalized interval valued intuitionistic fuzzy sets, Journal of Applied Mathematics and Informatics, 35(5-6), 459-476. [14] Baloui Jamkhaneh E., Nadarajah S. (2018) On modal operators over generalized intuitionistic fuzzy set, Gazi University Journal of Science, 31(1), 222-234. [15] Baloui Jamkhaneh, E., Garg, H. (2018) Some new operations over the generalized intuitionistic fuzzy sets and their application to decision making process, Granular Computing, 3(2), 111-122. [16] Bhowmik M., Pal M. (2009), Partition of generalized interval-valued intuitionistic fuzzy sets and some properties, International Journal of Applied Mathematical Analysis and Applications, 4(1), 1-10.[17] Bhowmik M., Pal M. (2010), Generalized interval-valued intuitionistic fuzzy sets. The Journal of Fuzzy Mathematics, 18(2), 357-371.[18] Bhowmik M., Pal M. (2012) Some results on generalized interval-valued intuitionistic fuzzy sets, International Journal of Fuzzy Systems, 14(2), 193-203.[19] Chen S. M., Yang M. W., Yang S. W., Sheu T. W., Liau C. J. (2012) Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets, Expert Systems with Applications, 39(15), 12085-12091.[20] Ezhilmaran D., Sudharsan S. (2014) Application of generalized interval valued intuitionistic fuzzy relation with fuzzy max-min composition technique in medical diagnosis, Applied Mathematical Sciences, 8(141), 7031-7038.[21] Li D. F. (2010) Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 37(8), 5939-5945.[22] Li D. F. (2010) TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets, Fuzzy Systems, IEEE Transactions on, 18(2), 299-311.[23] Li D. F. (2011) Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information, Applied Soft Computing, 11(4), 3402-3418.[24] Makui A., Gholamian M. R., Mohammadi S. E. (2015) Supplier selection with multi criteria group decision making based on interval valued intuitionistic fuzzy sets, Journal of Industrial and Systems Engineering, 8(4), 18-37. [25] Meng F., Tan C., Chen X. (2015) An approach to Atanassov's interval valued intuitionistic fuzzy multi-attribute decision making based on prospect theory, International Journal of Computational Intelligence Systems, 8(3), 591-605.[26] Mondal T. K., Samanta S. K. (2001) Topology of interval-valued intuitionistic fuzzy sets. Fuzzy sets and systems, 119(3), 483-494. [27] Pathinathan T., Jon Arockiaraj J., Ilavarasi P. (2014) An application of interval valued intuitionistic fuzzy sets in medical diagnosis using logical operators, International Journal of Computing Algorithm, 3(1), 495-49.[28] Qi X. W., Liang C. Y., Zhang J. (2013) Some generalized dependent aggregation operators with interval-valued intuitionistic fuzzy information and their application to exploitation investment evaluation, Journal of Applied Mathematics, vol. 2013, Article ID 705159, 24. doi:10.1155/2013/705159.[29] Reiser R. H. S., Bedregal B. (2017) Correlation in Interval Valued Atanassov’s Intuitionistic Fuzzy Sets — Conjugate and Negation Operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(5), 787-819.[30] Shabani A., Baloui Jamkhaneh E. (2014) A New Generalized Intuitionistic Fuzzy Number. Journal of Fuzzy Set Valued Analysis, 1-10. doi:10.5899/2014/jfsva-00199. [31] Sudharsan S., Ezhilmaran D. (2014) Two new operator defined over interval value intuitionistic fuzzy sets, International Journal of Fuzzy Logic Systems, 4(4), 1-13. [32] Tan C., Ma B., Wu D. D., Chen X. (2014) Multi-criteria decision making methods based on interval-valued intuitionistic fuzzy sets, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22( 03), 469-488.[33] Wang W., Liu X. (2013) Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making, Journal of Intelligent & Fuzzy Systems, 25(2), 279-290.[34] Wang L. L., Li D. F., Zhang S. S. (2013) Mathematical programming methodology for multiattribute decision making using interval valued intuitionistic fuzzy sets, Journal of Intelligent & Fuzzy Systems, 24(4), 755-763.[35] Wang C. Y., Chen S. M. (2017) Multiple attribute decision making based on interval valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method, Information Sciences, 397-398, 155-167. [36] Wei G. W., Wang X. R. (2007) Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making, In Proceedings of the international conference on computational intelligence and security, 495-499. [37] Xu Z. S., Jian C. H. E. N. (2007) Approach to group decision making based on interval-valued intuitionistic judgment matrices, Systems Engineering-Theory & Practice, 27(4), 126-133.[38] Xu Z. (2007) Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control and decision, 22(2), 215.[39] Yue Z. (2011) An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making, Expert Systems with Applications, 38(5), 6333-6338.[40] Zhang Z., Yang J., Ye Y., Zhang Q. S. (2011) A generalized interval valued intuitionistic fuzzy sets theory , Procedia Engineering 15, 2037 – 2041.[41] Zhang S., Yu D., Wang Y., Zhang W. (2014) Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set, The Scientific World Journal, vol. 2014, Article ID 234241, 10 pages, 2014. doi:10.1155/2014/234241.[42] Zhou F. (2015) Enterprise e-marketing performance evaluation based on interval valued intuitionistic fuzzy sets owa operator, Chemical Engineering Transactions, 46, 637-642 DOI:10.3303/CET1546107 .
Year 2019, Volume: 32 Issue: 3, 991 - 1006, 01.09.2019
https://doi.org/10.35378/gujs.434646

Abstract

References

  • [1] Ahn J. Y., Han K. S., Oh S. Y., Lee C. D. (2011) An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache, International Journal of Innovative Computing, Information and Control, 7(5), 2755-2762.[2] Ananthi V. P., Balasubramaniam P. (2015) Image fusion using interval-valued intuitionistic fuzzy sets, International Journal Image Data Fusion, 6, 249–269.[3] Atanassov K. T., Gargov G. (1989) Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(3), 343-349.[4] Atanassov K. T. (1994) Operations over interval valued fuzzy set, Fuzzy Sets and Systems, 64, 159-174.[5] Atanassov K. T. (1989) More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33, 37-45.[6] Bai Z. (2013) An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function, The Scientific World Journal, Volume 2013, Article ID 879089, 6 pages.[7] Baloui Jamkhaneh E., Nadarajah S. (2015) A New generalized intuitionistic fuzzy sets, Hacettepe Journal of Mathematics and Statistics, 44 (6) , 1537 – 1551.[8] Baloui Jamkhaneh E. (2015) New generalized interval value intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences, 5(1), 33-46.[9] Baloui Jamkhaneh E. (2016) New operations over generalized interval valued intuitionistic fuzzy sets, Gazi University Journal of Science, 29(3), 667-674. [10] Baloui Jamkhaneh E., Nadi Ghara A. (2017) Four new operators over generalized intuitionistic fuzzy sets, Journal of New Theory, 18, 12-21. [11] Baloui Jamkhaneh E., Amirzadi Arezoo (2017) New operators over the generalized interval valued intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences, 8(2), 81-94.[12] Baloui Jamkhaneh E. (2017a) The operators over the generalized intuitionistic fuzzy sets, International Journal Nonlinear Analysis and Applications, 8 (1), 11-21. [13] Baloui Jamkhaneh E. (2017b) On the modal operators over the generalized interval valued intuitionistic fuzzy sets, Journal of Applied Mathematics and Informatics, 35(5-6), 459-476. [14] Baloui Jamkhaneh E., Nadarajah S. (2018) On modal operators over generalized intuitionistic fuzzy set, Gazi University Journal of Science, 31(1), 222-234. [15] Baloui Jamkhaneh, E., Garg, H. (2018) Some new operations over the generalized intuitionistic fuzzy sets and their application to decision making process, Granular Computing, 3(2), 111-122. [16] Bhowmik M., Pal M. (2009), Partition of generalized interval-valued intuitionistic fuzzy sets and some properties, International Journal of Applied Mathematical Analysis and Applications, 4(1), 1-10.[17] Bhowmik M., Pal M. (2010), Generalized interval-valued intuitionistic fuzzy sets. The Journal of Fuzzy Mathematics, 18(2), 357-371.[18] Bhowmik M., Pal M. (2012) Some results on generalized interval-valued intuitionistic fuzzy sets, International Journal of Fuzzy Systems, 14(2), 193-203.[19] Chen S. M., Yang M. W., Yang S. W., Sheu T. W., Liau C. J. (2012) Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets, Expert Systems with Applications, 39(15), 12085-12091.[20] Ezhilmaran D., Sudharsan S. (2014) Application of generalized interval valued intuitionistic fuzzy relation with fuzzy max-min composition technique in medical diagnosis, Applied Mathematical Sciences, 8(141), 7031-7038.[21] Li D. F. (2010) Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 37(8), 5939-5945.[22] Li D. F. (2010) TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets, Fuzzy Systems, IEEE Transactions on, 18(2), 299-311.[23] Li D. F. (2011) Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information, Applied Soft Computing, 11(4), 3402-3418.[24] Makui A., Gholamian M. R., Mohammadi S. E. (2015) Supplier selection with multi criteria group decision making based on interval valued intuitionistic fuzzy sets, Journal of Industrial and Systems Engineering, 8(4), 18-37. [25] Meng F., Tan C., Chen X. (2015) An approach to Atanassov's interval valued intuitionistic fuzzy multi-attribute decision making based on prospect theory, International Journal of Computational Intelligence Systems, 8(3), 591-605.[26] Mondal T. K., Samanta S. K. (2001) Topology of interval-valued intuitionistic fuzzy sets. Fuzzy sets and systems, 119(3), 483-494. [27] Pathinathan T., Jon Arockiaraj J., Ilavarasi P. (2014) An application of interval valued intuitionistic fuzzy sets in medical diagnosis using logical operators, International Journal of Computing Algorithm, 3(1), 495-49.[28] Qi X. W., Liang C. Y., Zhang J. (2013) Some generalized dependent aggregation operators with interval-valued intuitionistic fuzzy information and their application to exploitation investment evaluation, Journal of Applied Mathematics, vol. 2013, Article ID 705159, 24. doi:10.1155/2013/705159.[29] Reiser R. H. S., Bedregal B. (2017) Correlation in Interval Valued Atanassov’s Intuitionistic Fuzzy Sets — Conjugate and Negation Operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(5), 787-819.[30] Shabani A., Baloui Jamkhaneh E. (2014) A New Generalized Intuitionistic Fuzzy Number. Journal of Fuzzy Set Valued Analysis, 1-10. doi:10.5899/2014/jfsva-00199. [31] Sudharsan S., Ezhilmaran D. (2014) Two new operator defined over interval value intuitionistic fuzzy sets, International Journal of Fuzzy Logic Systems, 4(4), 1-13. [32] Tan C., Ma B., Wu D. D., Chen X. (2014) Multi-criteria decision making methods based on interval-valued intuitionistic fuzzy sets, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22( 03), 469-488.[33] Wang W., Liu X. (2013) Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making, Journal of Intelligent & Fuzzy Systems, 25(2), 279-290.[34] Wang L. L., Li D. F., Zhang S. S. (2013) Mathematical programming methodology for multiattribute decision making using interval valued intuitionistic fuzzy sets, Journal of Intelligent & Fuzzy Systems, 24(4), 755-763.[35] Wang C. Y., Chen S. M. (2017) Multiple attribute decision making based on interval valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method, Information Sciences, 397-398, 155-167. [36] Wei G. W., Wang X. R. (2007) Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making, In Proceedings of the international conference on computational intelligence and security, 495-499. [37] Xu Z. S., Jian C. H. E. N. (2007) Approach to group decision making based on interval-valued intuitionistic judgment matrices, Systems Engineering-Theory & Practice, 27(4), 126-133.[38] Xu Z. (2007) Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control and decision, 22(2), 215.[39] Yue Z. (2011) An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making, Expert Systems with Applications, 38(5), 6333-6338.[40] Zhang Z., Yang J., Ye Y., Zhang Q. S. (2011) A generalized interval valued intuitionistic fuzzy sets theory , Procedia Engineering 15, 2037 – 2041.[41] Zhang S., Yu D., Wang Y., Zhang W. (2014) Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set, The Scientific World Journal, vol. 2014, Article ID 234241, 10 pages, 2014. doi:10.1155/2014/234241.[42] Zhou F. (2015) Enterprise e-marketing performance evaluation based on interval valued intuitionistic fuzzy sets owa operator, Chemical Engineering Transactions, 46, 637-642 DOI:10.3303/CET1546107 .
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Ezzatallah Balouı Jamkhaneh

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 3

Cite

APA Balouı Jamkhaneh, E. (2019). The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets. Gazi University Journal of Science, 32(3), 991-1006. https://doi.org/10.35378/gujs.434646
AMA Balouı Jamkhaneh E. The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets. Gazi University Journal of Science. September 2019;32(3):991-1006. doi:10.35378/gujs.434646
Chicago Balouı Jamkhaneh, Ezzatallah. “The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets”. Gazi University Journal of Science 32, no. 3 (September 2019): 991-1006. https://doi.org/10.35378/gujs.434646.
EndNote Balouı Jamkhaneh E (September 1, 2019) The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets. Gazi University Journal of Science 32 3 991–1006.
IEEE E. Balouı Jamkhaneh, “The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets”, Gazi University Journal of Science, vol. 32, no. 3, pp. 991–1006, 2019, doi: 10.35378/gujs.434646.
ISNAD Balouı Jamkhaneh, Ezzatallah. “The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets”. Gazi University Journal of Science 32/3 (September 2019), 991-1006. https://doi.org/10.35378/gujs.434646.
JAMA Balouı Jamkhaneh E. The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets. Gazi University Journal of Science. 2019;32:991–1006.
MLA Balouı Jamkhaneh, Ezzatallah. “The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets”. Gazi University Journal of Science, vol. 32, no. 3, 2019, pp. 991-1006, doi:10.35378/gujs.434646.
Vancouver Balouı Jamkhaneh E. The Modified Modal Operators over the Generalized Interval Valued Intuitionistic Fuzzy Sets. Gazi University Journal of Science. 2019;32(3):991-1006.