Research Article
BibTex RIS Cite
Year 2025, Early View, 1 - 1

Abstract

References

  • [1] Banaś, J. and Krajewska, M., “Existence of solutions for infinite systems of differential equations in spaces of tempered sequences”, Electronic Journal of Differential Equantios, 2017(60): 1-28, (2017).
  • [2] Haque, I., Ali, J., and Mursaleen, M., “Solvability of an infinite system of Langevin fractional differential equations in a new tempered sequence space”, Fractional Calculus and Applied Analysis, 26: 1894-1915, (2023). DOI: https://doi.org/10.1007/s13540-023-00175-y
  • [3] Das, A., Mohiuddine, S.A., Alotaibi, A., and Deuri, B. C., “Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces”, Alexandria Engineering Journal, 61(3): 2010-2015, (2022). DOI: https://doi.org/10.1016/j.aej.2021.07.031
  • [4] Haque, I., Ali, J., and Mursaleen, M., “Existence of solutions for an infinite systems of Hilfer fractional boundary value problems in tempered sequence spaces”, Alexandria Engineering Journal, 65: 575-583, (2023). DOI: https://doi.org/10.1016/j.aej.2022.09.032
  • [5] Mohiuddine, S.A., Das, A., and Alotaibi, A., “Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem”, Journal of Function Spaces, 2022, Article ID 4527439, 1-8, (2022). DOI: https://doi.org/10.1155/2022/4527439
  • [6] Mursaleen, M., and Başar, F., Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Boca Raton, (2020).
  • [7] Salem, A., Almaghamsi, L., and Alzahrani, F., “An infinite system of fractional order with p-Laplacian operator in a tempered sequence space via measure of noncompactness technique”, Fractal Fractional, 5(4): Article 182, (2021). DOI: https://doi.org/10.3390/fractalfract5040182
  • [8] Rabbani, M., Das, A., Hazarika, B., and Arab, R., “Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations”, Chaos, Solitons & Fractals, 140: 1-7, (2020). DOI: https://doi.org/10.1016/j.chaos.2020.110221
  • [9] Grossman, M. and Katz, R., Non-Newtonian Calculus, Lee Press, Masschusetts, (1872).
  • [10] Bashirov, A.E., Kurpınar, E. M. and Özyapıcı, A., “Multiplicative calculus and its applications”, Journal of Mathematical Analysis and Applications, 337(1): 36-48, (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
  • [11] Binbaşıoğlu, D., Demiriz, S. and Türkoğlu, D., “Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces”, Journal of Fixed Point Theory and Applications, 18: 213-224, (2016). DOI: https://doi.org/10.1007/s11784-015-0271-y
  • [12] Binbaşıoğlu, D., “On fixed point results for generalized contractıons in non-Newtonian metric spaces”, Cumhuriyet Science Journal, 43(2), 289-293, (2022). DOI: https://doi.org/10.17776/csj.1007806
  • [13] Çakmak, A.F., and Başar, F., “Some new results on sequence spaces with respect to non-Newtonian calculus”, Journal of Inequalities and Applications, 2012(228): 1-17, (2012). DOI: https://doi.org/10.1186/1029-242X-2012-228
  • [14] Çakmak, A.F., and Başar, F., “Certain spaces of functions over the field of non-Newtonian complex numbers”, Abstract and Applied Analysis, 2014, Article ID 236124, 1-12, (2014). DOI: https://doi.org/10.1155/2014/236124
  • [15] Güngör, N., “Some geometric properties of the non-Newtonian sequence l_p (N)”, Mathematica Slovaca, 70(3): 689-696, (2020). DOI: https://doi.org/10.1515/ms-2017-0382
  • [16] Rohman, M., and Eryılmaz, İ., “Some basic results in ν-normed spaces”, Indonesian Journal of Mathematics and Applications, 1(1): 1-8, (2023). DOI: https://doi.org/10.21776/ub.ijma.2023.001.01.1

Basic Properties of Tempered ν-Sequence Spaces

Year 2025, Early View, 1 - 1

Abstract

In this paper, we will introduce tempered ν-sequence spaces generated by directed preserving generator ν. After building the spaces, we investigate and show tempered ν-sequence spaces are Banach spaces. In addition, we also find that there is an isomorphism between tempered ν-sequence spaces and the classical one. The direct implication is that some tempered ν-sequence spaces have a Schauder basis.

References

  • [1] Banaś, J. and Krajewska, M., “Existence of solutions for infinite systems of differential equations in spaces of tempered sequences”, Electronic Journal of Differential Equantios, 2017(60): 1-28, (2017).
  • [2] Haque, I., Ali, J., and Mursaleen, M., “Solvability of an infinite system of Langevin fractional differential equations in a new tempered sequence space”, Fractional Calculus and Applied Analysis, 26: 1894-1915, (2023). DOI: https://doi.org/10.1007/s13540-023-00175-y
  • [3] Das, A., Mohiuddine, S.A., Alotaibi, A., and Deuri, B. C., “Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces”, Alexandria Engineering Journal, 61(3): 2010-2015, (2022). DOI: https://doi.org/10.1016/j.aej.2021.07.031
  • [4] Haque, I., Ali, J., and Mursaleen, M., “Existence of solutions for an infinite systems of Hilfer fractional boundary value problems in tempered sequence spaces”, Alexandria Engineering Journal, 65: 575-583, (2023). DOI: https://doi.org/10.1016/j.aej.2022.09.032
  • [5] Mohiuddine, S.A., Das, A., and Alotaibi, A., “Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem”, Journal of Function Spaces, 2022, Article ID 4527439, 1-8, (2022). DOI: https://doi.org/10.1155/2022/4527439
  • [6] Mursaleen, M., and Başar, F., Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Boca Raton, (2020).
  • [7] Salem, A., Almaghamsi, L., and Alzahrani, F., “An infinite system of fractional order with p-Laplacian operator in a tempered sequence space via measure of noncompactness technique”, Fractal Fractional, 5(4): Article 182, (2021). DOI: https://doi.org/10.3390/fractalfract5040182
  • [8] Rabbani, M., Das, A., Hazarika, B., and Arab, R., “Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations”, Chaos, Solitons & Fractals, 140: 1-7, (2020). DOI: https://doi.org/10.1016/j.chaos.2020.110221
  • [9] Grossman, M. and Katz, R., Non-Newtonian Calculus, Lee Press, Masschusetts, (1872).
  • [10] Bashirov, A.E., Kurpınar, E. M. and Özyapıcı, A., “Multiplicative calculus and its applications”, Journal of Mathematical Analysis and Applications, 337(1): 36-48, (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
  • [11] Binbaşıoğlu, D., Demiriz, S. and Türkoğlu, D., “Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces”, Journal of Fixed Point Theory and Applications, 18: 213-224, (2016). DOI: https://doi.org/10.1007/s11784-015-0271-y
  • [12] Binbaşıoğlu, D., “On fixed point results for generalized contractıons in non-Newtonian metric spaces”, Cumhuriyet Science Journal, 43(2), 289-293, (2022). DOI: https://doi.org/10.17776/csj.1007806
  • [13] Çakmak, A.F., and Başar, F., “Some new results on sequence spaces with respect to non-Newtonian calculus”, Journal of Inequalities and Applications, 2012(228): 1-17, (2012). DOI: https://doi.org/10.1186/1029-242X-2012-228
  • [14] Çakmak, A.F., and Başar, F., “Certain spaces of functions over the field of non-Newtonian complex numbers”, Abstract and Applied Analysis, 2014, Article ID 236124, 1-12, (2014). DOI: https://doi.org/10.1155/2014/236124
  • [15] Güngör, N., “Some geometric properties of the non-Newtonian sequence l_p (N)”, Mathematica Slovaca, 70(3): 689-696, (2020). DOI: https://doi.org/10.1515/ms-2017-0382
  • [16] Rohman, M., and Eryılmaz, İ., “Some basic results in ν-normed spaces”, Indonesian Journal of Mathematics and Applications, 1(1): 1-8, (2023). DOI: https://doi.org/10.21776/ub.ijma.2023.001.01.1
There are 16 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Minanur Rohman 0000-0003-0941-3787

İlker Eryılmaz 0000-0002-3590-892X

Nihat Altınışık 0000-0002-8914-4240

Moh. Nurul Huda 0000-0003-3952-2706

Eduardus Beo Seso Delvion 0009-0006-0792-7513

Early Pub Date March 8, 2025
Publication Date
Submission Date December 13, 2023
Acceptance Date February 15, 2025
Published in Issue Year 2025 Early View

Cite

APA Rohman, M., Eryılmaz, İ., Altınışık, N., Huda, M. N., et al. (2025). Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science1-1.
AMA Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. Published online March 1, 2025:1-1.
Chicago Rohman, Minanur, İlker Eryılmaz, Nihat Altınışık, Moh. Nurul Huda, and Eduardus Beo Seso Delvion. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science, March (March 2025), 1-1.
EndNote Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS (March 1, 2025) Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science 1–1.
IEEE M. Rohman, İ. Eryılmaz, N. Altınışık, M. N. Huda, and E. B. S. Delvion, “Basic Properties of Tempered ν-Sequence Spaces”, Gazi University Journal of Science, pp. 1–1, March 2025.
ISNAD Rohman, Minanur et al. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science. March 2025. 1-1.
JAMA Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. 2025;:1–1.
MLA Rohman, Minanur et al. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science, 2025, pp. 1-1.
Vancouver Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. 2025:1-.