Research Article
BibTex RIS Cite

An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1479385

Abstract

In this study, structural, optical, and pyroelectric properties of Z-cut single crystal LiTaO3 bulk materials with thicknesses of 27 µm and 250 µm are analyzed. XRD results show characteristic diffraction peaks of Z-cut LiTaO3 at (012), (006), and (202), along with a Ta2O5 peak due to Li-deficiency. The strong (006) peak confirms a high c-orientation, indicating pyroelectric potential. Raman spectroscopy confirms agreement with known vibration modes of bulk LiTaO3. Band gap values for the 27 µm and 250 µm samples are determined as 4.44 eV and 4.65 eV, respectively, with both showing a direct band gap. Temperature changes from 30 ℃ to 180 ℃ were applied at rates of 50 ℃, 100 ℃, and 150 ℃. As temperatures rose, negative pyroelectric currents were observed; with cooling, currents shifted positive. The 250 µm thick, 24 mm² LiTaO3 wafer produced about 4 nA at 50 ℃ rate, rising to 12-13 nA at 150 ℃. With larger surface areas yielding higher currents, measurements on three wafers at a 50 ℃ change showed the highest-area sample producing ~7.5 nA, while the smallest yielded ~0.5 nA. The mean pyroelectric current density was higher in 27 µm (180 µA/m²) than in 250 µm (125 µA/m²), and the pyroelectric coefficient increased with decreasing thickness, measured at 33.43 µC/m²∙K (27 µm) and 23.22 µC/m²∙K (250 µm). These results suggest the potential of LiTaO3 crystals in IR detectors and self-powered deep UV detector applications due to their wide band gap.

Supporting Institution

Nero Industries Defence Inc.

Project Number

118C117 (Tübitak 2244 Industrial Fellowship PhD Program)

References

  • [1] Dinh T. V., Choi I. Y., Son Y. S., and Kim J. C., “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction”, Sensors and Actuators, B: Chemical, 231, 529–538, (2016).
  • [2] Rogalski A., “Infrared detectors: Status and trends”, Progress in Quantum Electronics, 27, 59–210, (2003).
  • [3] Jun L., Qiulin T., Wendong Z., Chenyang X., Tao G., and Jijun X., “Miniature low-power IR monitor for methane detection”, Measurement (Lond), 44, 823–831, (2011).
  • [4] Qiu-lin T., Wen-dong Z., Chen-yang X., Ji-jun X., Jun L., Jun-hong L., and Ting L., “Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors”, Microelectronics Journal, 40(1), 58–62, (2009).
  • [5] Estrada R., Djohan N., Pasole D., Dahrul M., Kurniawan A., Iskandar J., Hardhienata H., and Irzaman, “The optical band gap of LiTaO3 and Nb2O5-doped LiTaO3 thin films based on Tauc Plot method to be applied on satellite”, IOP Conference Series Earth Environmental Science, 54, 012092, (2017).
  • [6] Kao M.C., Chen H.Z., Young S.L., Lin C.C., and Yu C.C., “Thickness-dependent microstructures and electrical properties of LiTaO3 thin films prepared by a sol-gel process”, International Journal of Modern Physics B., 21(18), 3404-3411, (2007).
  • [7] Levine B.F., “Quantum‐well infrared photodetectors”, Journal of Applied Physics, 74, R1, (1998).
  • [8] Stenger V., Shnider M., Sriram S., Dooley D., and Stout M., “Thin Film Lithium Tantalate (TFLT) pyroelectric detectors”, Proceedings of SPIE – The International Society for Optical Engineering, 8261, 174–182, (2012).
  • [9] Chen M., Shen X., Zhou C., Cao D., and Xue W., “High-performance self-powered visible-blind ultraviolet photodetection achieved by ferroelectric PbZr0.52Ti0.48O3 thin films”, Journal of Alloys and Compounds, 897, 163202, (2020).
  • [10] Ma N., and Yang Y., “Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect”, Nano Energy, 40, 352-359, (2017).
  • [11] Kovar M., Dvorak L., and Cerny S., “Application of pyroelectric properties of LiTaO3 single crystal to microcalorimetric measurement of the heat of adsorption”, Applied Surface Science, 74(1), 51-59, (1994).
  • [12] Muralt P., “Micromachined infrared detectors based on pyroelectric thin films”, Reports on Progress in Physics, 64, 1339, (2001).
  • [13] Xiao X., Liang S., Si J., Xu Q., Zhang H., Ma L., Yang C., and Zhang X., “Performance of LiTaO3 Crystals and Thin Films and Their Application”, Crystals, 13(8), 1233, (2023).
  • [14] Deb K.K., Hill M.D., and Kelly J.F., “Pyroelectric characteristics of modified barium titanate ceramics”, Journal of Materials Research and Technology, 7, 3296–3305, (1992).
  • [15] Zhao H., Liu X., Ren W., and Zhang Y., “Preparation and characterization of lead zirconate titanate thin films grown by RF magnetron sputtering for pyroelectric infrared detector arrays”, Ceramic International, 44, 7-10, (2018).
  • [16] Sinha N., Goel N., Singh B.K., Gupta M.K., and Kumar B., “Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals”, Journal of Solid State Chemistry, 190, 180–185, (2012).
  • [17] Muralt P., “Pyroelectricity”, Encyclopedia of Condensed Matter Physics, 441–448, (2005).
  • [18] Lang S.B., “Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool”, Physics Today, 58, 31, (2007).
  • [19] Lubomirsky I., and Stafsudd O., “Invited review article: Practical guide for pyroelectric measurements”, Review of Scientific Instruments, 83, 5, (2012).
  • [20] Ranu, U.B, Sinha R., and Agarwal P.B., “CMOS compatible pyroelectric materials for infrared detectors”, Materiat Science and Semiconductor Processing, 140, 106375, (2022).
  • [21] Hang W., Zhou L., Zhang K., Shimizu J., and Yuan J., “Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution”, Precision Engineering, 44, 62-69, (2016).
  • [22] Schossig M., Norkus V., and Gerlach G., “Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate”, Infrared Physics and Technology, 63, 35-41, (2014). DOI: https://doi.org/10.1016/j.infrared.2013.12.005
  • [23] Yan, T., Zheng, F., Yu, Y., Qin, S., Liu, H., Wang, J., and Yu, D., “Formation mechanism of black LiTaO3 single crystals through chemical reduction”, Journal of Applied Crystallography, 44, 158–162, (2011).
  • [24] Durdu, S., Aktas, S., Sarcan F., Akagunduz, E., Gultekin, B. Erol, A., Usta, M., “Effect of water-based electrolyte on surface, mechanical and tribological properties of ZrO2 nanotube arrays produced on zirconium”, Journal of the Australian Ceramic Society, 60, 833–848, (2024).
  • [25] Vilarinho P.M., Barroca N., Zlotnik S., Félix P., and Fernandes M.H., “Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive?”, Materials Science and Engineering: C, 39, 395–402, (2014).
  • [26] Kostritskii S.M., Aillerie M., Bourson P., and Kip D., “Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals”, Applied Physics B, 95, 125–130, (2009).
  • [27] Abdurakhmonov S.D., and Gorelik V.S., “Overtone Raman Scattering in Lithium Tantalate Single Crystals”, Optical Spectroscopy, 127, 587–590, (2019).
  • [28] Sanna S., Neufeld S., Rüsing M., Berth G., Zrenner A., and Schmidt W. G., “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals”, Physical Review B Condensed Matter and Material Physics, 91, 224302, (2015).
  • [29] Palatnikov M., Sidorov N., Pyatyshev A., and Skrabatun A., “Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas”, Photonics, 10, 439, (2023).
  • [30] Tauc J., Grigorovici R., and Vancu A., “Optical Properties and Electronic Structure of Amorphous Germanium”, Physica Status Solid (b), 15, 627–637, (1966).
  • [31] Ismangil A., Jenie R.P., Irmansyah, and Irzaman, “Development of Lithium Tantallite (LiTaO3) for Automatic Switch on LAPAN-IPB Satellite Infra-red Sensor”, Procedia Environmental Sciences, 24, 329–334, (2015).
  • [32] Stokowski S., Venables J., Byer N., and Ensign T., “Ion-beam milled, high-detectivity pyroelectric detectors”, Infrared Physics, 16 (3): 331–334, (1976).
Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1479385

Abstract

Project Number

118C117 (Tübitak 2244 Industrial Fellowship PhD Program)

References

  • [1] Dinh T. V., Choi I. Y., Son Y. S., and Kim J. C., “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction”, Sensors and Actuators, B: Chemical, 231, 529–538, (2016).
  • [2] Rogalski A., “Infrared detectors: Status and trends”, Progress in Quantum Electronics, 27, 59–210, (2003).
  • [3] Jun L., Qiulin T., Wendong Z., Chenyang X., Tao G., and Jijun X., “Miniature low-power IR monitor for methane detection”, Measurement (Lond), 44, 823–831, (2011).
  • [4] Qiu-lin T., Wen-dong Z., Chen-yang X., Ji-jun X., Jun L., Jun-hong L., and Ting L., “Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors”, Microelectronics Journal, 40(1), 58–62, (2009).
  • [5] Estrada R., Djohan N., Pasole D., Dahrul M., Kurniawan A., Iskandar J., Hardhienata H., and Irzaman, “The optical band gap of LiTaO3 and Nb2O5-doped LiTaO3 thin films based on Tauc Plot method to be applied on satellite”, IOP Conference Series Earth Environmental Science, 54, 012092, (2017).
  • [6] Kao M.C., Chen H.Z., Young S.L., Lin C.C., and Yu C.C., “Thickness-dependent microstructures and electrical properties of LiTaO3 thin films prepared by a sol-gel process”, International Journal of Modern Physics B., 21(18), 3404-3411, (2007).
  • [7] Levine B.F., “Quantum‐well infrared photodetectors”, Journal of Applied Physics, 74, R1, (1998).
  • [8] Stenger V., Shnider M., Sriram S., Dooley D., and Stout M., “Thin Film Lithium Tantalate (TFLT) pyroelectric detectors”, Proceedings of SPIE – The International Society for Optical Engineering, 8261, 174–182, (2012).
  • [9] Chen M., Shen X., Zhou C., Cao D., and Xue W., “High-performance self-powered visible-blind ultraviolet photodetection achieved by ferroelectric PbZr0.52Ti0.48O3 thin films”, Journal of Alloys and Compounds, 897, 163202, (2020).
  • [10] Ma N., and Yang Y., “Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect”, Nano Energy, 40, 352-359, (2017).
  • [11] Kovar M., Dvorak L., and Cerny S., “Application of pyroelectric properties of LiTaO3 single crystal to microcalorimetric measurement of the heat of adsorption”, Applied Surface Science, 74(1), 51-59, (1994).
  • [12] Muralt P., “Micromachined infrared detectors based on pyroelectric thin films”, Reports on Progress in Physics, 64, 1339, (2001).
  • [13] Xiao X., Liang S., Si J., Xu Q., Zhang H., Ma L., Yang C., and Zhang X., “Performance of LiTaO3 Crystals and Thin Films and Their Application”, Crystals, 13(8), 1233, (2023).
  • [14] Deb K.K., Hill M.D., and Kelly J.F., “Pyroelectric characteristics of modified barium titanate ceramics”, Journal of Materials Research and Technology, 7, 3296–3305, (1992).
  • [15] Zhao H., Liu X., Ren W., and Zhang Y., “Preparation and characterization of lead zirconate titanate thin films grown by RF magnetron sputtering for pyroelectric infrared detector arrays”, Ceramic International, 44, 7-10, (2018).
  • [16] Sinha N., Goel N., Singh B.K., Gupta M.K., and Kumar B., “Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals”, Journal of Solid State Chemistry, 190, 180–185, (2012).
  • [17] Muralt P., “Pyroelectricity”, Encyclopedia of Condensed Matter Physics, 441–448, (2005).
  • [18] Lang S.B., “Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool”, Physics Today, 58, 31, (2007).
  • [19] Lubomirsky I., and Stafsudd O., “Invited review article: Practical guide for pyroelectric measurements”, Review of Scientific Instruments, 83, 5, (2012).
  • [20] Ranu, U.B, Sinha R., and Agarwal P.B., “CMOS compatible pyroelectric materials for infrared detectors”, Materiat Science and Semiconductor Processing, 140, 106375, (2022).
  • [21] Hang W., Zhou L., Zhang K., Shimizu J., and Yuan J., “Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution”, Precision Engineering, 44, 62-69, (2016).
  • [22] Schossig M., Norkus V., and Gerlach G., “Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate”, Infrared Physics and Technology, 63, 35-41, (2014). DOI: https://doi.org/10.1016/j.infrared.2013.12.005
  • [23] Yan, T., Zheng, F., Yu, Y., Qin, S., Liu, H., Wang, J., and Yu, D., “Formation mechanism of black LiTaO3 single crystals through chemical reduction”, Journal of Applied Crystallography, 44, 158–162, (2011).
  • [24] Durdu, S., Aktas, S., Sarcan F., Akagunduz, E., Gultekin, B. Erol, A., Usta, M., “Effect of water-based electrolyte on surface, mechanical and tribological properties of ZrO2 nanotube arrays produced on zirconium”, Journal of the Australian Ceramic Society, 60, 833–848, (2024).
  • [25] Vilarinho P.M., Barroca N., Zlotnik S., Félix P., and Fernandes M.H., “Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive?”, Materials Science and Engineering: C, 39, 395–402, (2014).
  • [26] Kostritskii S.M., Aillerie M., Bourson P., and Kip D., “Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals”, Applied Physics B, 95, 125–130, (2009).
  • [27] Abdurakhmonov S.D., and Gorelik V.S., “Overtone Raman Scattering in Lithium Tantalate Single Crystals”, Optical Spectroscopy, 127, 587–590, (2019).
  • [28] Sanna S., Neufeld S., Rüsing M., Berth G., Zrenner A., and Schmidt W. G., “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals”, Physical Review B Condensed Matter and Material Physics, 91, 224302, (2015).
  • [29] Palatnikov M., Sidorov N., Pyatyshev A., and Skrabatun A., “Comparison of Raman Spectra of Optically Nonlinear LiTaO3:Cr3+ (0.005 wt%) Crystal Laser Excited in Visible (532 nm) and Near-IR (785 nm) Areas”, Photonics, 10, 439, (2023).
  • [30] Tauc J., Grigorovici R., and Vancu A., “Optical Properties and Electronic Structure of Amorphous Germanium”, Physica Status Solid (b), 15, 627–637, (1966).
  • [31] Ismangil A., Jenie R.P., Irmansyah, and Irzaman, “Development of Lithium Tantallite (LiTaO3) for Automatic Switch on LAPAN-IPB Satellite Infra-red Sensor”, Procedia Environmental Sciences, 24, 329–334, (2015).
  • [32] Stokowski S., Venables J., Byer N., and Ensign T., “Ion-beam milled, high-detectivity pyroelectric detectors”, Infrared Physics, 16 (3): 331–334, (1976).
There are 32 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, General Physics, Material Physics, Compound Semiconductors, Electronic, Optics and Magnetic Materials
Journal Section Research Article
Authors

Mustafa Buyukharman 0000-0002-9111-0904

Ahmet Ünverdi 0000-0001-6144-1158

Fahrettin Sarcan 0000-0002-8860-4321

Şule Özdilek 0000-0002-2859-1645

Alican Ökçün 0009-0004-8599-7002

Ayşe Erol 0000-0003-4196-1791

Project Number 118C117 (Tübitak 2244 Industrial Fellowship PhD Program)
Early Pub Date December 26, 2024
Publication Date
Submission Date May 6, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2025 Early View

Cite

APA Buyukharman, M., Ünverdi, A., Sarcan, F., Özdilek, Ş., et al. (2024). An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1479385
AMA Buyukharman M, Ünverdi A, Sarcan F, Özdilek Ş, Ökçün A, Erol A. An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3. Gazi University Journal of Science. Published online December 1, 2024:1-1. doi:10.35378/gujs.1479385
Chicago Buyukharman, Mustafa, Ahmet Ünverdi, Fahrettin Sarcan, Şule Özdilek, Alican Ökçün, and Ayşe Erol. “An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3”. Gazi University Journal of Science, December (December 2024), 1-1. https://doi.org/10.35378/gujs.1479385.
EndNote Buyukharman M, Ünverdi A, Sarcan F, Özdilek Ş, Ökçün A, Erol A (December 1, 2024) An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3. Gazi University Journal of Science 1–1.
IEEE M. Buyukharman, A. Ünverdi, F. Sarcan, Ş. Özdilek, A. Ökçün, and A. Erol, “An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3”, Gazi University Journal of Science, pp. 1–1, December 2024, doi: 10.35378/gujs.1479385.
ISNAD Buyukharman, Mustafa et al. “An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3”. Gazi University Journal of Science. December 2024. 1-1. https://doi.org/10.35378/gujs.1479385.
JAMA Buyukharman M, Ünverdi A, Sarcan F, Özdilek Ş, Ökçün A, Erol A. An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3. Gazi University Journal of Science. 2024;:1–1.
MLA Buyukharman, Mustafa et al. “An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3”. Gazi University Journal of Science, 2024, pp. 1-1, doi:10.35378/gujs.1479385.
Vancouver Buyukharman M, Ünverdi A, Sarcan F, Özdilek Ş, Ökçün A, Erol A. An Investigation of Structural, Optical and Pyroelectrical Properties of LiTaO3. Gazi University Journal of Science. 2024:1-.