Araştırma Makalesi
BibTex RIS Kaynak Göster

Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study

Yıl 2022, Cilt: 35 Sayı: 2, 388 - 402, 01.06.2022
https://doi.org/10.35378/gujs.846075

Öz

Density functional theory (DFT) computations were performed to unveil the electronic structures and the Kohn-Sham Molecular Orbitals (MOs) of the dimeric aza-BODIPY molecule and its chlorinated form. The optimized conformation of dimers is well in alignment with the one provided in the literature. The HOMO LUMO gap of dichloro-derivative is smaller than that of the dimeric aza-BODIPY molecule by 35.0 meV. The predicted HOMO energies of -6.40 and -6.60 eV point out the good stabilities of both compounds. They were reported to demonstrate bathochromic shifts of 40 and 57 nm compared to their monomers substituted by H and Cl, respectively. The intriguing photophysical behaviors of these molecules were investigated by conducting the Tamm-Dancoff density functional theory (TDA-DFT) calculations. The max values emerge from the HOMO-1 -> LUMO+1 (83-86%) transitions, whereas the low energy transitions arise from HOMO -> LUMO (89%). Therefrom predicted ELUMO->HOMO of the dimeric aza-BODIPY and dichloro-derivative are 1.89 and 1.87 eV, respectively, which are matching well with the reported literature values.

Teşekkür

MEC is indebted to Dipl. Chem. R. Breuer for his helps during (TDA)-DFT computations. MEC thanks Prof. Dr. A. Gul at the Istanbul Technical University for his inspiring work. The High-Performance-Computing (HPC) Linux Cluster HorUS of the University of Siegen is gratefully acknowledged for computational resources.

Kaynakça

  • [1] Ziessel, R., Ulrich, G., Harriman, A., “The chemistry of BODIPY: A new el dorado for fluorescence tools”, New Journal of Chemistry, 31: 496-501, (2007).
  • [2] Sevinç, G., Hayvalı, M., “The synthesis of new aryl boron-dipyrromethene compounds: Photophysical and pH responsive properties”, Journal of the Turkish Chemical Society Section A: Chemistry, 5: 433 44, (2018).
  • [3] Jiao, L., Yu, C., Wang, J., Briggs, E.A., Besley, N.A., Robinson, D., Ruedas-Rama, M.J., Orte, A., Crovetto, L., Talavera, E.M., Alvarez-Pez, J.M., Van der Auweraerd, M., Boens, N., “Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes”, RSC Advances, 5: 89375 89388, (2015).
  • [4] Dhokale, B., Jadhav, T., Mobin, S.M., Misra, R., “Meso enyne substituted BODIPYs: synthesis, structure and properties”, Dalton Transactions, 44: 15803 15812, (2015).
  • [5] Zinna, F., Bruhn, T., Guido, C.A., Ahrens, J., Bröring, M., Di Bari, L., Pescitelli, G., “Circularly Polarized Luminescence from Axially Chiral BODIPY DYEmers: An Experimental and Computational Study”, Chemistry – A European Journal, 22: 16089 16098, (2016).
  • [6] Treich, N.R., Wimpenny, J.D., Kieffer, I.A., Heiden, Z.M., “Synthesis and characterization of chiral and achiral diamines containing one or two BODIPY molecules”, New Journal of Chemistry, 41: 14370 14378, (2017).
  • [7] Yu, C., Wu, Q., Tian, Z., Li, T., Hao, E., Jiao, L., “Synthesis and photophysical properties of meso-aryloxy linked BODIPY monomers, dimers, and trimer”, Journal of Porphyrins and Phthalocyanines, 20: 475 489, (2016).
  • [8] Descalzo, A.B., Xu, H.-J., Shen, Z., Rurack, K., “Red/Near-infrared boron-dipyrromethene dyes as strongly emitting fluorophores”, Annals of the New York Academy of Sciences, 1130: 164-171, (2008).
  • [9] Antina, E.V., Bumagina, N.A., “Tetraaryl-substituted aza-BODIPY: synthesis, spectral properties, and possible applications”, Chemistry of Heterocyclic Compounds, 53: 39–41, (2017).
  • [10] Allik, T. H., Hermes, R. E., Sathyamoorthi, G., Boyer, J. H., “Spectroscopy and laser performance of new BF2-complex dyes in solution”, Proceedings of SPIE - The International Society for Optical Engineering, 2115 2129, 240, (1994).
  • [11] Sathyamoorthi, G., Soong, M. L., Ross, T. W., Boyer, J. H., “Fluorescent tricyclic β‐azavinamidine–BF2 complexes”, Heteroatom Chemistry, 4, 603, (1993).
  • [12] Kage, Y., Mori, S., Ide, M., Saeki, A., Furuta, H., Shimizu, S., “Blackening of aza-BODIPY analogues by simple dimerization: panchromatic absorption of a pyrrolopyrrole aza-BODIPY dimer”, Materials Chemistry Frontiers, 2: 112 120, (2018).
  • [13] Liu, H., Lu, H., Zhou, Z., Shimizu, S., Li, Z., Kobayashi, N., Shen, Z., “Asymmetric core-expanded aza-BODIPY analogues: facile synthesis and optical properties”, Chemical Communications, 51: 1713 1716, (2015).
  • [14] Jiang, X.-D., Guan, J., Zhao, J., Le Guennic, B., Jacquemin, D., Zhang, Z., Chen, S., Xiao, L., “Synthesis, structure and photophysical properties of NIR aza-BODIPYs with F/N3/NH2 groups at 1,7-positions”, Dyes and Pigments, 136: 619-626, (2017).
  • [15] Kolemen, S., Cakmak, Y., Ozdemir, T., Erten-Ela, S., Buyuktemiz, M., Dede, Y., Akkaya, E.U., “Design and characterization of BODIPY derivatives for bulk heterojunction solar cells”, Tetrahedron, 70: 6229-6234, (2014).
  • [16] Qi, X., Kim, S.K., Han, S.J., Xu, L., Jee, A.Y., Kim, H.N., Lee, C., Kim, Y., Lee, M., Kim, S.-J., Yoon, J., “New BODIPY–triazine based tripod fluorescent systems”, Tetrahedron Letters, 49: 261-264, (2008).
  • [17] Adarsh, N., Avirah, R.R., Ramaiah, D., “Tuning photosensitized singlet oxygen generation efficiency of novel aza-BODIPY dyes”, Organic Letters, 12: 5720-5723, (2010).
  • [18] Wang, Y., Chen, L., El-Shishtawy, R.M., Aziz, S.G., Müllen, K., “Synthesis and optophysical properties of dimeric aza-BODIPY dyes with a push–pull benzodipyrrolidone core”, Chemical Communications, 50: 11540-11542, (2014).
  • [19] Nepomnyashchii, A.B., Bröring, M., Ahrens, J., Bard, A. J., “Synthesis, photophysical, electrochemical, and electrogenerated chemiluminescence studies. Multiple sequential electron transfers in BODIPY monomers, dimers, trimers, and polymer”, Journal of the American Chemical Society, 133: 8633–8645, (2011).
  • [20] Çınar, H.Ş., Özçelik, Ş., Kaya, K., Dülger Kutlu, Ö., Erdoğmuş, A., Gül, A., “Synthesis and photo¬physical properties of monomeric and dimeric halogenated aza-BODIPYs”, Journal of Molecular Structure, 1200: 127108, (2020).
  • [21] Tamm, I., “Relativistic interaction of elementary particles”, Russian Physics Journal, 9: 449-460, (1945).
  • [22] Dancoff, S.M., “Non-Adiabatic Meson Theory of Nuclear Forces”, Physical Review Journals, 78: 382-385 (1950).
  • [23] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., “Gaussian 09”, Rev.D.01, Gaussian, Inc., Wallingford CT, 2013.
  • [24] Zhao, Y., Truhlar, D., “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals”, Theoretical Chemistry Accounts, 120: 215−241, (2008).
  • [25] Momeni, M.R., Brown, A., “A local CC2 and TDA-DFT double hybrid study on BODIPY/aza-BODIPY dimers as heavy atom free triplet photosensitizers for photodynamic therapy applications”, The Journal of Physical Chemistry A, 120: 2550−2560, (2016).
  • [26] Ozmaldar, A., Cakar, Z.P., Balta, B., “The investigation of oxidative decomposition of phenyl alanine by transition metal ions”, Journal of the Turkish Chemical Society Section A: Chemistry, 90-92, (2015).
  • [27] Grimme, S., Antony, J., Ehrlich, S., Krieg, H., “A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, The Journal of Chemical Physics, 132: 154104(1-19), (2010).
  • [28] Grimme, S., “Density functional theory with London dispersion corrections”, WIREs Computational Molecular Science, 1: 211-228, (2011).
  • [29] Kruse, H., Goerigk, L., Grimme, L., “Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem”, The Journal of Organic Chemistry, 77: 10824-10834, (2012).
  • [30] Goerigk, L., Grimme, S., “A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions”, Physical Chemistry Chemical Physics, 13: 6670−6688, (2011).
  • [31] Hohenstein, E.G., Chill, S.T., Sherrill, C.D., “Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules”, Journal of Chemical Theory and Computation, 4: 1996−2000, (2008).
  • [32] Lu, T., Chen, F., “A multifunctional wavefunction analyzer”, Journal of Computational Chemistry, 33: 580-592, (2012).
  • [33] Foster, J.P., Weinhold, F., “Natural hybrid orbitals”, Journal of the American Chemical Society, 102: 7211-7218, (1980).
  • [34] Reed, A.D., Curtiss, L.A., Weinhold, F., “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint”, Chemical Reviews, 88: 899-926, (1988).
  • [35] Weinhold, F., Landis, C.R., Glendening, E.D., “What is NBO analysis and how is it useful?”, International Reviews in Physical Chemistry, 35: 399-440, (2016).
  • [36] Glendering, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, 1998.
  • [37] Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., “NBO 3.1 Program Manual”, 1988.
  • [38] Grimme, S., Neese, F., “Double-hybrid density functional theory for excited electronic states of molecules”, The Journal of Chemical Physics, 127: 154116, (1-18), (2007).
  • [39] Ernzerhof, M., Scuseria, G.E., “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional”, The Journal of Chemical Physics, 110: 5029-5036, (1999).
  • [40] Alberto, M.E., de Simone, B.C., Mazzone, G., Quartarolo, A.D., Russo, N., “Theoretical determination of electronic spectra and intersystem spin-orbit coupling: the case of isoindole-BODIPY dyes”, Journal of Chemical Theory and Computation, 10: 4006−4013, (2014).
  • [41] Momeni, M.R., Brown, A., “Why do TD-DFT excitation energies of BODIPY/aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods”, Journal of Chemical Theory and Computation, 11: 2619−2632, (2015).
  • [42] Mennucci, B., Cances, E., Tomasi, J., “Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications”, The Journal of Physical Chemistry B, 101: 10506–10517, (1997).
  • [43] Dennington, R., Keith, T., Millam, J., “GaussView”, Version 5, Semichem Inc.: Shawnee Mission, K.S. (2009).
  • [44] O'Boyle, N.M., Tenderholt, A.L., Langner, K.M., “cclib: A library for package–independent computational chemistry algorithms”, Journal of Computational Chemistry, 29: 839-845, (2008).
  • [45] Cinar, M.E., Ozturk, T., “Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties”, Chemical Reviews, 115: 3036−3140, (2015).
  • [46] Killoran, J., Allen, L., Gallagher, J.F., Gallagher, W.M., O’Shea, D.F., “Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behavior”, Chemical Communications, 1862-1863, (2002).
  • [47] Zhang, X., Yu, H., Xiao, Y., “Replacing phenyl ring with thiophene: an approach to longer wavelength aza-dipyrromethene boron difluoride (aza-BODIPY) dyes”, The Journal of Organic Chemistry, 77: 669−673, (2012).
  • [48] Jackson, N.E., Savoie, B.M., Kohlstedt, K.L., de la Cruz, M.O., Schatz, G.C., Chen, L.X., Ratner, M.A., “Controlling conformations of conjugated polymers and small molecules: the role of nonbonding interactions”, Journal of the American Chemical Society, 135: 10475−10483, (2013).
  • [49] Gorman, A., Killoran, J., O’Shea, C., Kenna, T., Gallagher, W.M., O’Shea, D.F., “In vitro demonstration of the heavy-atom effect for photodynamic therapy”, Journal of the American Chemical Society, 126: 10619-10631, (2004).
  • [50] Wiberg, K.B., Rablen, P.R., “A comparison of atomic charges derived via different procedures”, Journal of Computational Chemistry, 14: 1504-1518, (1993).
  • [51] Shi, W., Liu, J., An, Z., Zhang, Q., Wang, C., “Theoretical Investigations into The Effects of Electric Field on Hydroxylamine Cation”, Gazi University Journal of Science, 30 (1): 167-174 (2017).
  • [52] Ersanlı, C., “Synthesis, X-ray and Quantum Chemical Characterizations Studies on (E)-2-Bromo-4-chloro-6-[(4-chloro-2,5-dimethoxyphenylimino)methyl]phenol Compound”, Gazi University Journal of Science, 30 (4): 531-543, (2018).
  • [53] Lingam, C.B., Tewari, S.P., “Theoretical studies on aminoborane oligomers”, Computational and Theoretical Chemistry, 1020: 151-156, (2013).
  • [54] Ekincioğlu, Y., Kılıç, H., Dereli, Ö., “A DFT/TD-DFT study on the Molecular Structure Absorption and Fluorescence Spectra of Gas/Solution Phases Adenosine 5’–triphosphate Molecule”, Gazi University Journal of Science, 35: ASAP, (2021). DOI: 10.35378/gujs.834249.
  • [55] Schmittel, M., Steffen, J.-P., Rodríguez, D., Engelen, B., Neumann, E., Cinar, M.E., “Thermal C2-C6 cyclization of enyne-carbodiimides: Experimental evidence contradicts a diradical and suggests a carbene intermediate”, The Journal of Organic Chemistry, 73: 3005-3016, (2008).
  • [56] Rana, A., Cinar, M.E., Samanta, D., Schmittel, M., “Mechanistic information from nonstationary points”, Organic Letters, 18: 84−87, (2016).
  • [57] Cinar, M.E., “Thermal reaction of 1,8-diketone: A computational study”, Computational and Theoretical Chemistry, 1170: 112641 (1-10), (2019).
  • [58] Xiao, H.-M., Li, Y.-Y., “Banding and electronic structures of metal azides. Sensitivity and conductivity”, Science in China Series B Chemistry, 38: 538-545, (1995).
  • [59] Lingam, C.B., Babu, K.R., Tewari, S.P., Vaitheeswaran G., “Quantum chemical studies on beryllium hydride oligomers”, Computational and Theoretical Chemistry, 963: 371-377, (2011).
  • [60] Turkoglu, G., Cinar, M.E., “Experimental and computational studies on the absorption properties of novel formazan derivatives”, Turkish Journal of Chemistry, 41: 710-727, (2017).
  • [61] Walker, M., Harvey, A.J.A., Sen, A., Dessent, C.E.H., “Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions”, The Journal of Physical Chemistry A, 117: 12590−12600, (2013).
  • [62] Pekbelgin Karaoğlu, H., Kalkan Burat, A., “Synthesis and photophysical properties of usymmetrically substituted phthalocyanine-pyrene conjugate”, Journal of the Turkish Chemical Society Section A: Chemistry, 328-319, (2019).
  • [63] Mulliken, R.S., “A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities”, The Journal of Chemical Physics, 2: 782-793, (1934).
  • [64] Mulliken, R.S., “Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments”, The Journal of Chemical Physics, 3: 573-585, (1935).
  • [65] Koopmans, T., “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms”, Physica, 1: 104–113, (1934).
  • [66] Franck, J., “Elementary processes of photochemical reactions”, Transactions of the Faraday Society, 21: 536-542, (1926).
  • [67] Shukla, R., Thakur, K., Chebny, V.J., Reid, S.A., Rathore, R., “Direct observation of electron-transfer-induced conformational transformation (molecular actuation) in a bichromophoric electron donor”, The Journal of Physical Chemistry B, 114: 14592–14595, (2010).
  • [68] Zhan, C.-G., Nichols, J.A., Dixon, D.A., „Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies”, The Journal of Physical Chemistry A, 107: 4184-4195, (2003).
  • [69] Pearson, R.G., “Hard and soft acids and bases hsab.1.fundamental principles”, Journal of Chemical Education, 45: 581-587, (1968).
  • [70] Pearson, R.G., Songstad, J., “Application of the principle of hard and soft acids and bases to organic chemistry”, Journal of the American Chemical Society, 89: 1827-1836, (1967).
  • [71] Parr, R.G., Pearson, R.G., “Absolute hardness-companion parameter to absolute electronegativity”, Journal of the American Chemical Society, 105: 7512-7516, (1983).
  • [72] Parr, R.G., Von Szentpaly, L., Liu, S.B., “Electrophilicity index”, Journal of the American Chemical Society, 121: 1922-1924 (1999).
  • [73] Pearson, R.G., “Maximum chemical and physical hardness”, Journal of Chemical Education, 76: 267-275, (1999).
  • [74] Chattaraj, P.K., Sarkar, U., Roy, D.R., “Electrophilicity index”, Chemical Reviews, 106: 2065-2091, (2006).
  • [75] Zhang, G., Musgrave, C.B., “Comparison of DFT methods for molecular orbital eigenvalue calculations”, The Journal of Physical Chemistry A, 111: 1554-1561, (2007).
Yıl 2022, Cilt: 35 Sayı: 2, 388 - 402, 01.06.2022
https://doi.org/10.35378/gujs.846075

Öz

Kaynakça

  • [1] Ziessel, R., Ulrich, G., Harriman, A., “The chemistry of BODIPY: A new el dorado for fluorescence tools”, New Journal of Chemistry, 31: 496-501, (2007).
  • [2] Sevinç, G., Hayvalı, M., “The synthesis of new aryl boron-dipyrromethene compounds: Photophysical and pH responsive properties”, Journal of the Turkish Chemical Society Section A: Chemistry, 5: 433 44, (2018).
  • [3] Jiao, L., Yu, C., Wang, J., Briggs, E.A., Besley, N.A., Robinson, D., Ruedas-Rama, M.J., Orte, A., Crovetto, L., Talavera, E.M., Alvarez-Pez, J.M., Van der Auweraerd, M., Boens, N., “Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes”, RSC Advances, 5: 89375 89388, (2015).
  • [4] Dhokale, B., Jadhav, T., Mobin, S.M., Misra, R., “Meso enyne substituted BODIPYs: synthesis, structure and properties”, Dalton Transactions, 44: 15803 15812, (2015).
  • [5] Zinna, F., Bruhn, T., Guido, C.A., Ahrens, J., Bröring, M., Di Bari, L., Pescitelli, G., “Circularly Polarized Luminescence from Axially Chiral BODIPY DYEmers: An Experimental and Computational Study”, Chemistry – A European Journal, 22: 16089 16098, (2016).
  • [6] Treich, N.R., Wimpenny, J.D., Kieffer, I.A., Heiden, Z.M., “Synthesis and characterization of chiral and achiral diamines containing one or two BODIPY molecules”, New Journal of Chemistry, 41: 14370 14378, (2017).
  • [7] Yu, C., Wu, Q., Tian, Z., Li, T., Hao, E., Jiao, L., “Synthesis and photophysical properties of meso-aryloxy linked BODIPY monomers, dimers, and trimer”, Journal of Porphyrins and Phthalocyanines, 20: 475 489, (2016).
  • [8] Descalzo, A.B., Xu, H.-J., Shen, Z., Rurack, K., “Red/Near-infrared boron-dipyrromethene dyes as strongly emitting fluorophores”, Annals of the New York Academy of Sciences, 1130: 164-171, (2008).
  • [9] Antina, E.V., Bumagina, N.A., “Tetraaryl-substituted aza-BODIPY: synthesis, spectral properties, and possible applications”, Chemistry of Heterocyclic Compounds, 53: 39–41, (2017).
  • [10] Allik, T. H., Hermes, R. E., Sathyamoorthi, G., Boyer, J. H., “Spectroscopy and laser performance of new BF2-complex dyes in solution”, Proceedings of SPIE - The International Society for Optical Engineering, 2115 2129, 240, (1994).
  • [11] Sathyamoorthi, G., Soong, M. L., Ross, T. W., Boyer, J. H., “Fluorescent tricyclic β‐azavinamidine–BF2 complexes”, Heteroatom Chemistry, 4, 603, (1993).
  • [12] Kage, Y., Mori, S., Ide, M., Saeki, A., Furuta, H., Shimizu, S., “Blackening of aza-BODIPY analogues by simple dimerization: panchromatic absorption of a pyrrolopyrrole aza-BODIPY dimer”, Materials Chemistry Frontiers, 2: 112 120, (2018).
  • [13] Liu, H., Lu, H., Zhou, Z., Shimizu, S., Li, Z., Kobayashi, N., Shen, Z., “Asymmetric core-expanded aza-BODIPY analogues: facile synthesis and optical properties”, Chemical Communications, 51: 1713 1716, (2015).
  • [14] Jiang, X.-D., Guan, J., Zhao, J., Le Guennic, B., Jacquemin, D., Zhang, Z., Chen, S., Xiao, L., “Synthesis, structure and photophysical properties of NIR aza-BODIPYs with F/N3/NH2 groups at 1,7-positions”, Dyes and Pigments, 136: 619-626, (2017).
  • [15] Kolemen, S., Cakmak, Y., Ozdemir, T., Erten-Ela, S., Buyuktemiz, M., Dede, Y., Akkaya, E.U., “Design and characterization of BODIPY derivatives for bulk heterojunction solar cells”, Tetrahedron, 70: 6229-6234, (2014).
  • [16] Qi, X., Kim, S.K., Han, S.J., Xu, L., Jee, A.Y., Kim, H.N., Lee, C., Kim, Y., Lee, M., Kim, S.-J., Yoon, J., “New BODIPY–triazine based tripod fluorescent systems”, Tetrahedron Letters, 49: 261-264, (2008).
  • [17] Adarsh, N., Avirah, R.R., Ramaiah, D., “Tuning photosensitized singlet oxygen generation efficiency of novel aza-BODIPY dyes”, Organic Letters, 12: 5720-5723, (2010).
  • [18] Wang, Y., Chen, L., El-Shishtawy, R.M., Aziz, S.G., Müllen, K., “Synthesis and optophysical properties of dimeric aza-BODIPY dyes with a push–pull benzodipyrrolidone core”, Chemical Communications, 50: 11540-11542, (2014).
  • [19] Nepomnyashchii, A.B., Bröring, M., Ahrens, J., Bard, A. J., “Synthesis, photophysical, electrochemical, and electrogenerated chemiluminescence studies. Multiple sequential electron transfers in BODIPY monomers, dimers, trimers, and polymer”, Journal of the American Chemical Society, 133: 8633–8645, (2011).
  • [20] Çınar, H.Ş., Özçelik, Ş., Kaya, K., Dülger Kutlu, Ö., Erdoğmuş, A., Gül, A., “Synthesis and photo¬physical properties of monomeric and dimeric halogenated aza-BODIPYs”, Journal of Molecular Structure, 1200: 127108, (2020).
  • [21] Tamm, I., “Relativistic interaction of elementary particles”, Russian Physics Journal, 9: 449-460, (1945).
  • [22] Dancoff, S.M., “Non-Adiabatic Meson Theory of Nuclear Forces”, Physical Review Journals, 78: 382-385 (1950).
  • [23] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., “Gaussian 09”, Rev.D.01, Gaussian, Inc., Wallingford CT, 2013.
  • [24] Zhao, Y., Truhlar, D., “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals”, Theoretical Chemistry Accounts, 120: 215−241, (2008).
  • [25] Momeni, M.R., Brown, A., “A local CC2 and TDA-DFT double hybrid study on BODIPY/aza-BODIPY dimers as heavy atom free triplet photosensitizers for photodynamic therapy applications”, The Journal of Physical Chemistry A, 120: 2550−2560, (2016).
  • [26] Ozmaldar, A., Cakar, Z.P., Balta, B., “The investigation of oxidative decomposition of phenyl alanine by transition metal ions”, Journal of the Turkish Chemical Society Section A: Chemistry, 90-92, (2015).
  • [27] Grimme, S., Antony, J., Ehrlich, S., Krieg, H., “A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, The Journal of Chemical Physics, 132: 154104(1-19), (2010).
  • [28] Grimme, S., “Density functional theory with London dispersion corrections”, WIREs Computational Molecular Science, 1: 211-228, (2011).
  • [29] Kruse, H., Goerigk, L., Grimme, L., “Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem”, The Journal of Organic Chemistry, 77: 10824-10834, (2012).
  • [30] Goerigk, L., Grimme, S., “A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions”, Physical Chemistry Chemical Physics, 13: 6670−6688, (2011).
  • [31] Hohenstein, E.G., Chill, S.T., Sherrill, C.D., “Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules”, Journal of Chemical Theory and Computation, 4: 1996−2000, (2008).
  • [32] Lu, T., Chen, F., “A multifunctional wavefunction analyzer”, Journal of Computational Chemistry, 33: 580-592, (2012).
  • [33] Foster, J.P., Weinhold, F., “Natural hybrid orbitals”, Journal of the American Chemical Society, 102: 7211-7218, (1980).
  • [34] Reed, A.D., Curtiss, L.A., Weinhold, F., “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint”, Chemical Reviews, 88: 899-926, (1988).
  • [35] Weinhold, F., Landis, C.R., Glendening, E.D., “What is NBO analysis and how is it useful?”, International Reviews in Physical Chemistry, 35: 399-440, (2016).
  • [36] Glendering, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, 1998.
  • [37] Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., “NBO 3.1 Program Manual”, 1988.
  • [38] Grimme, S., Neese, F., “Double-hybrid density functional theory for excited electronic states of molecules”, The Journal of Chemical Physics, 127: 154116, (1-18), (2007).
  • [39] Ernzerhof, M., Scuseria, G.E., “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional”, The Journal of Chemical Physics, 110: 5029-5036, (1999).
  • [40] Alberto, M.E., de Simone, B.C., Mazzone, G., Quartarolo, A.D., Russo, N., “Theoretical determination of electronic spectra and intersystem spin-orbit coupling: the case of isoindole-BODIPY dyes”, Journal of Chemical Theory and Computation, 10: 4006−4013, (2014).
  • [41] Momeni, M.R., Brown, A., “Why do TD-DFT excitation energies of BODIPY/aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods”, Journal of Chemical Theory and Computation, 11: 2619−2632, (2015).
  • [42] Mennucci, B., Cances, E., Tomasi, J., “Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications”, The Journal of Physical Chemistry B, 101: 10506–10517, (1997).
  • [43] Dennington, R., Keith, T., Millam, J., “GaussView”, Version 5, Semichem Inc.: Shawnee Mission, K.S. (2009).
  • [44] O'Boyle, N.M., Tenderholt, A.L., Langner, K.M., “cclib: A library for package–independent computational chemistry algorithms”, Journal of Computational Chemistry, 29: 839-845, (2008).
  • [45] Cinar, M.E., Ozturk, T., “Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties”, Chemical Reviews, 115: 3036−3140, (2015).
  • [46] Killoran, J., Allen, L., Gallagher, J.F., Gallagher, W.M., O’Shea, D.F., “Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behavior”, Chemical Communications, 1862-1863, (2002).
  • [47] Zhang, X., Yu, H., Xiao, Y., “Replacing phenyl ring with thiophene: an approach to longer wavelength aza-dipyrromethene boron difluoride (aza-BODIPY) dyes”, The Journal of Organic Chemistry, 77: 669−673, (2012).
  • [48] Jackson, N.E., Savoie, B.M., Kohlstedt, K.L., de la Cruz, M.O., Schatz, G.C., Chen, L.X., Ratner, M.A., “Controlling conformations of conjugated polymers and small molecules: the role of nonbonding interactions”, Journal of the American Chemical Society, 135: 10475−10483, (2013).
  • [49] Gorman, A., Killoran, J., O’Shea, C., Kenna, T., Gallagher, W.M., O’Shea, D.F., “In vitro demonstration of the heavy-atom effect for photodynamic therapy”, Journal of the American Chemical Society, 126: 10619-10631, (2004).
  • [50] Wiberg, K.B., Rablen, P.R., “A comparison of atomic charges derived via different procedures”, Journal of Computational Chemistry, 14: 1504-1518, (1993).
  • [51] Shi, W., Liu, J., An, Z., Zhang, Q., Wang, C., “Theoretical Investigations into The Effects of Electric Field on Hydroxylamine Cation”, Gazi University Journal of Science, 30 (1): 167-174 (2017).
  • [52] Ersanlı, C., “Synthesis, X-ray and Quantum Chemical Characterizations Studies on (E)-2-Bromo-4-chloro-6-[(4-chloro-2,5-dimethoxyphenylimino)methyl]phenol Compound”, Gazi University Journal of Science, 30 (4): 531-543, (2018).
  • [53] Lingam, C.B., Tewari, S.P., “Theoretical studies on aminoborane oligomers”, Computational and Theoretical Chemistry, 1020: 151-156, (2013).
  • [54] Ekincioğlu, Y., Kılıç, H., Dereli, Ö., “A DFT/TD-DFT study on the Molecular Structure Absorption and Fluorescence Spectra of Gas/Solution Phases Adenosine 5’–triphosphate Molecule”, Gazi University Journal of Science, 35: ASAP, (2021). DOI: 10.35378/gujs.834249.
  • [55] Schmittel, M., Steffen, J.-P., Rodríguez, D., Engelen, B., Neumann, E., Cinar, M.E., “Thermal C2-C6 cyclization of enyne-carbodiimides: Experimental evidence contradicts a diradical and suggests a carbene intermediate”, The Journal of Organic Chemistry, 73: 3005-3016, (2008).
  • [56] Rana, A., Cinar, M.E., Samanta, D., Schmittel, M., “Mechanistic information from nonstationary points”, Organic Letters, 18: 84−87, (2016).
  • [57] Cinar, M.E., “Thermal reaction of 1,8-diketone: A computational study”, Computational and Theoretical Chemistry, 1170: 112641 (1-10), (2019).
  • [58] Xiao, H.-M., Li, Y.-Y., “Banding and electronic structures of metal azides. Sensitivity and conductivity”, Science in China Series B Chemistry, 38: 538-545, (1995).
  • [59] Lingam, C.B., Babu, K.R., Tewari, S.P., Vaitheeswaran G., “Quantum chemical studies on beryllium hydride oligomers”, Computational and Theoretical Chemistry, 963: 371-377, (2011).
  • [60] Turkoglu, G., Cinar, M.E., “Experimental and computational studies on the absorption properties of novel formazan derivatives”, Turkish Journal of Chemistry, 41: 710-727, (2017).
  • [61] Walker, M., Harvey, A.J.A., Sen, A., Dessent, C.E.H., “Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions”, The Journal of Physical Chemistry A, 117: 12590−12600, (2013).
  • [62] Pekbelgin Karaoğlu, H., Kalkan Burat, A., “Synthesis and photophysical properties of usymmetrically substituted phthalocyanine-pyrene conjugate”, Journal of the Turkish Chemical Society Section A: Chemistry, 328-319, (2019).
  • [63] Mulliken, R.S., “A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities”, The Journal of Chemical Physics, 2: 782-793, (1934).
  • [64] Mulliken, R.S., “Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments”, The Journal of Chemical Physics, 3: 573-585, (1935).
  • [65] Koopmans, T., “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms”, Physica, 1: 104–113, (1934).
  • [66] Franck, J., “Elementary processes of photochemical reactions”, Transactions of the Faraday Society, 21: 536-542, (1926).
  • [67] Shukla, R., Thakur, K., Chebny, V.J., Reid, S.A., Rathore, R., “Direct observation of electron-transfer-induced conformational transformation (molecular actuation) in a bichromophoric electron donor”, The Journal of Physical Chemistry B, 114: 14592–14595, (2010).
  • [68] Zhan, C.-G., Nichols, J.A., Dixon, D.A., „Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies”, The Journal of Physical Chemistry A, 107: 4184-4195, (2003).
  • [69] Pearson, R.G., “Hard and soft acids and bases hsab.1.fundamental principles”, Journal of Chemical Education, 45: 581-587, (1968).
  • [70] Pearson, R.G., Songstad, J., “Application of the principle of hard and soft acids and bases to organic chemistry”, Journal of the American Chemical Society, 89: 1827-1836, (1967).
  • [71] Parr, R.G., Pearson, R.G., “Absolute hardness-companion parameter to absolute electronegativity”, Journal of the American Chemical Society, 105: 7512-7516, (1983).
  • [72] Parr, R.G., Von Szentpaly, L., Liu, S.B., “Electrophilicity index”, Journal of the American Chemical Society, 121: 1922-1924 (1999).
  • [73] Pearson, R.G., “Maximum chemical and physical hardness”, Journal of Chemical Education, 76: 267-275, (1999).
  • [74] Chattaraj, P.K., Sarkar, U., Roy, D.R., “Electrophilicity index”, Chemical Reviews, 106: 2065-2091, (2006).
  • [75] Zhang, G., Musgrave, C.B., “Comparison of DFT methods for molecular orbital eigenvalue calculations”, The Journal of Physical Chemistry A, 111: 1554-1561, (2007).
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Chemistry
Yazarlar

Mehmet Emin Çınar 0000-0002-9822-0946

Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 35 Sayı: 2

Kaynak Göster

APA Çınar, M. E. (2022). Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. Gazi University Journal of Science, 35(2), 388-402. https://doi.org/10.35378/gujs.846075
AMA Çınar ME. Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. Gazi University Journal of Science. Haziran 2022;35(2):388-402. doi:10.35378/gujs.846075
Chicago Çınar, Mehmet Emin. “Dimeric Aza-BODIPY and Dichloro-Aza-BODIPY: A DFT Study”. Gazi University Journal of Science 35, sy. 2 (Haziran 2022): 388-402. https://doi.org/10.35378/gujs.846075.
EndNote Çınar ME (01 Haziran 2022) Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. Gazi University Journal of Science 35 2 388–402.
IEEE M. E. Çınar, “Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study”, Gazi University Journal of Science, c. 35, sy. 2, ss. 388–402, 2022, doi: 10.35378/gujs.846075.
ISNAD Çınar, Mehmet Emin. “Dimeric Aza-BODIPY and Dichloro-Aza-BODIPY: A DFT Study”. Gazi University Journal of Science 35/2 (Haziran 2022), 388-402. https://doi.org/10.35378/gujs.846075.
JAMA Çınar ME. Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. Gazi University Journal of Science. 2022;35:388–402.
MLA Çınar, Mehmet Emin. “Dimeric Aza-BODIPY and Dichloro-Aza-BODIPY: A DFT Study”. Gazi University Journal of Science, c. 35, sy. 2, 2022, ss. 388-02, doi:10.35378/gujs.846075.
Vancouver Çınar ME. Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. Gazi University Journal of Science. 2022;35(2):388-402.