Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 36 Sayı: 1, 430 - 439, 01.03.2023
https://doi.org/10.35378/gujs.944300

Öz

Kaynakça

  • [1] Pandey, A., Pandey, S., Parhi, D.R., “Mobile robot navigation and obstacle avoidance techniques: A review”, International Robotics & Automation Journal, 2(3): 00022, (2017).
  • [2] Spong, M. W., Hutchinson, S., Vidyasagar, M., Robot modeling and control, John Wiley & Sons, United States, (2020).
  • [3] Cui, M., Sun, D., Liu, W., Zhao, M., Liao, X., “Adaptive tracking and obstacle avoidance control for mobile robots with unknown sliding”, International Journal of Advanced Robotic Systems, 9(5): 171, (2012).
  • [4] Nazemizadeh, M., Rahimi, H. N., Khoiy, K.A., “Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task”, Frontiers of Mechanical Engineering, 7(1): 23-28, (2012).
  • [5] Yen, C.T., Cheng, M.F., “A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance”, Microsystem Technologies, 24(1): 125-135, (2018).
  • [6] Liu, J., Yang, J., Liu, H., Tian, X., Gao, M., “An improved ant colony algorithm for robot path planning”, Soft Computing, 21(19): 5829-5839, (2017).
  • [7] Nazemizadeh, M., Mallahi Kolahi, P., “Trajectory Tracking of an Intelligent Mobile Robot on a Slope Surface using the Nonlinear Sliding Mode Control”, Mechanic of Advanced and Smart Materials, 1(1): 1-14, (2021).
  • [8] Korayem, M.H., Ghobadi, N., Fathollahi Dehkordi, S., “Designing an optimal control strategy for a mobile manipulator and its application by considering the effect of uncertainties and wheel slipping”, Optimal Control Applications and Methods, 1-25, (2021).
  • [9] Mallahi Kolahi, P., Mosayebi, M., “Optimal Trajectory Planning for an Industrial Mobile Robot using Optimal Control Theory”, Journal of Modern Processes in Manufacturing and Production, 10(3), 25-34, (2021).
  • [10] Korayem, M.H., Nazemizadeh, M., Nohooji, H.R., “Optimal point-to-point motion planning of nonholonomic mobile robots in the presence of multiple obstacles”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(1): 221-232, (2014).
  • [11] Wu, Y., Liu, L., Yang, Y., Dai, S., “Optimal Control Method for Robot-Tracking Based on Control-Lyapunov-Function”, IEEE Access, 7: 90565-90573, (2019).
  • [12] Klancar, G., Zdesar, A., Blazic, S., Skrjanc, I., “Wheeled mobile robotics: from fundamentals towards autonomous systems”, Butterworth-Heinemann, United Kingdom, (2017).
  • [13] Kirk, D.E., “Optimal control theory: an introduction”, Courier Corporation, Prentice Hall, New York, (1994).
  • [14] Wang, X., “Solving optimal control problems with MATLAB: Indirect methods”, Industrial and Systems Engineering Department., NCSU, Raleigh, NC, 27695, (2009).

Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot

Yıl 2023, Cilt: 36 Sayı: 1, 430 - 439, 01.03.2023
https://doi.org/10.35378/gujs.944300

Öz

The design of the mobile robot path is important when obstacles are present in the environment. In the present study, the theory of optimal control for path design and obstacle avoidance via simultaneous minimization of the time and kinetic energy is proposed. Nonlinear equations of robot motion without simplification are considered in optimum control problems, and in order to prevent collisions, the potential functions are utilized. In the next phase, the cost function is proposed that includes velocity inputs, time, and the potential function for obstacle avoidance, in which the nonlinear equation of the motion of the mobile robot is deemed as a constraint. The final equations are numerically solved, and the capability and effectiveness of the presented method will be presented via different simulations on the mobile robot.

Kaynakça

  • [1] Pandey, A., Pandey, S., Parhi, D.R., “Mobile robot navigation and obstacle avoidance techniques: A review”, International Robotics & Automation Journal, 2(3): 00022, (2017).
  • [2] Spong, M. W., Hutchinson, S., Vidyasagar, M., Robot modeling and control, John Wiley & Sons, United States, (2020).
  • [3] Cui, M., Sun, D., Liu, W., Zhao, M., Liao, X., “Adaptive tracking and obstacle avoidance control for mobile robots with unknown sliding”, International Journal of Advanced Robotic Systems, 9(5): 171, (2012).
  • [4] Nazemizadeh, M., Rahimi, H. N., Khoiy, K.A., “Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task”, Frontiers of Mechanical Engineering, 7(1): 23-28, (2012).
  • [5] Yen, C.T., Cheng, M.F., “A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance”, Microsystem Technologies, 24(1): 125-135, (2018).
  • [6] Liu, J., Yang, J., Liu, H., Tian, X., Gao, M., “An improved ant colony algorithm for robot path planning”, Soft Computing, 21(19): 5829-5839, (2017).
  • [7] Nazemizadeh, M., Mallahi Kolahi, P., “Trajectory Tracking of an Intelligent Mobile Robot on a Slope Surface using the Nonlinear Sliding Mode Control”, Mechanic of Advanced and Smart Materials, 1(1): 1-14, (2021).
  • [8] Korayem, M.H., Ghobadi, N., Fathollahi Dehkordi, S., “Designing an optimal control strategy for a mobile manipulator and its application by considering the effect of uncertainties and wheel slipping”, Optimal Control Applications and Methods, 1-25, (2021).
  • [9] Mallahi Kolahi, P., Mosayebi, M., “Optimal Trajectory Planning for an Industrial Mobile Robot using Optimal Control Theory”, Journal of Modern Processes in Manufacturing and Production, 10(3), 25-34, (2021).
  • [10] Korayem, M.H., Nazemizadeh, M., Nohooji, H.R., “Optimal point-to-point motion planning of nonholonomic mobile robots in the presence of multiple obstacles”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(1): 221-232, (2014).
  • [11] Wu, Y., Liu, L., Yang, Y., Dai, S., “Optimal Control Method for Robot-Tracking Based on Control-Lyapunov-Function”, IEEE Access, 7: 90565-90573, (2019).
  • [12] Klancar, G., Zdesar, A., Blazic, S., Skrjanc, I., “Wheeled mobile robotics: from fundamentals towards autonomous systems”, Butterworth-Heinemann, United Kingdom, (2017).
  • [13] Kirk, D.E., “Optimal control theory: an introduction”, Courier Corporation, Prentice Hall, New York, (1994).
  • [14] Wang, X., “Solving optimal control problems with MATLAB: Indirect methods”, Industrial and Systems Engineering Department., NCSU, Raleigh, NC, 27695, (2009).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mechanical Engineering
Yazarlar

Masoud Mosayebi 0000-0002-9030-7051

Pouya Mallahi Kolahi Bu kişi benim 0000-0001-5826-893X

Yayımlanma Tarihi 1 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 36 Sayı: 1

Kaynak Göster

APA Mosayebi, M., & Mallahi Kolahi, P. (2023). Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot. Gazi University Journal of Science, 36(1), 430-439. https://doi.org/10.35378/gujs.944300
AMA Mosayebi M, Mallahi Kolahi P. Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot. Gazi University Journal of Science. Mart 2023;36(1):430-439. doi:10.35378/gujs.944300
Chicago Mosayebi, Masoud, ve Pouya Mallahi Kolahi. “Time Optimal Trajectory Generation With Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot”. Gazi University Journal of Science 36, sy. 1 (Mart 2023): 430-39. https://doi.org/10.35378/gujs.944300.
EndNote Mosayebi M, Mallahi Kolahi P (01 Mart 2023) Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot. Gazi University Journal of Science 36 1 430–439.
IEEE M. Mosayebi ve P. Mallahi Kolahi, “Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot”, Gazi University Journal of Science, c. 36, sy. 1, ss. 430–439, 2023, doi: 10.35378/gujs.944300.
ISNAD Mosayebi, Masoud - Mallahi Kolahi, Pouya. “Time Optimal Trajectory Generation With Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot”. Gazi University Journal of Science 36/1 (Mart 2023), 430-439. https://doi.org/10.35378/gujs.944300.
JAMA Mosayebi M, Mallahi Kolahi P. Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot. Gazi University Journal of Science. 2023;36:430–439.
MLA Mosayebi, Masoud ve Pouya Mallahi Kolahi. “Time Optimal Trajectory Generation With Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot”. Gazi University Journal of Science, c. 36, sy. 1, 2023, ss. 430-9, doi:10.35378/gujs.944300.
Vancouver Mosayebi M, Mallahi Kolahi P. Time Optimal Trajectory Generation with Obstacle Avoidance by Using Optimal Control Theory for a Wheeled Mobile Robot. Gazi University Journal of Science. 2023;36(1):430-9.