BibTex RIS Cite

ON SOME PROJECTIVE PLANES OF FINITE ORDER

Year 2005, Volume: 18 Issue: 2, 315 - 325, 13.08.2010

Abstract

ABSTRACT

In this work, construction methods of projective planes of order 2, 3, 4, 5, 7 and 8 are examined. Informations about the obtaining of known four different planes of order 9 and non-existence of a projective plane of order 10 which is obtained according to computer based calculations are collected.

References

  • Tarry, G., Le Probleme des 36 Officiers, Compte Rendu de I’Association Française pour I’Avancement de Science Naturel, 1: 122-123 (1900).
  • Tarry, G., Le Probleme des 36 Officiers, Compte Rendu de I’Association Française pour I’Avancement de Science Naturel, 2: 170-203 (1901).
  • Bruck, R.H., Ryser H.J., “The Non-existence of Certain Finite Projective Planes”, Canadian Journal of Math., 1: 88- 93 (1949).
  • Batten, L.M., Combinatorics of Finite Geometries. Cambridge University Press, 43-44 (1986).
  • Kaya, R., Projektif Geometri. Anadolu Üniversitesi Yayınları. No:551. Eskişehir, 112-114 (1992).
  • Internet: Projective Plane of order 5. http://www.maths.monash.edu.au/~bpolster/pg5.html. (2004).
  • Beutelspacher, A., 21-6=15: A Connection Between Two Distinguished Geometries, Fachbereich Mathematik der Universitat, Saarstr. 21, D-6500 Mainz, Federal Republic of Germany, 29-40 (1986).
  • İnternet: Projective Plane of order 4. http://www.win.tue.nl/math/dw/pp/hansc/mathieu/node2.html. (2000).
  • Elkies, N., “Proof the Uniqueness of the Projective Plane of Order 5”, elkies@MATH.HARVARD.EDU. (2000).
  • Pierce, W.A., “The Impossibility of Fano’s Configuration in a Projective Plane with Eight Points Per Line”, Am. Math. Soc. Proc. ,4: 908-912 (1953).
  • Hall, M. JR., “Uniqueness of the Projective Plane with 57 Points”, Am. Math. Soc. Proc. , 4: 912-916 (1953).
  • Hall, M. JR., Correction to Uniqueness of the Projective Plane with 57 Points. Am. Math. Soc. Proc. , 5: 994-997 (1954).
  • Moufang, R., „Zur Struktur der Projektiven Geometrie der Ebene“, Math. Ann. , 105: 536-601 (1931).
  • Bose, R.C., “On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares”, Sankhya 3: 323-338 (1938).
  • Stevenson, F. W., Projective Planes. W. H. Freeman and Company, San Francisco, 416s (1972).
  • Laywine, C.F., Mullen, G.L., Discrete Mathematics Using Latin Squares, John Wiley&Sons., NewYork. 137-140 (1998).
  • Norton, H.W., “The 7×
  • Sade, A., “An omission in Norton’s list of 7×
  • Hall, M. JR., J.D. Swıft and R.J. Walker, Uniqueness of the Projective Plane of Order Eight. Math. Tables Aids. Comput. , 10: 186-194 (1956).
  • Hughes, D.R., Piper, F.C., Projective Planes. Springer – Verlag, New York Inc, 196-201 (1973).
  • Room, T.G., Kırkpatrıck, P.B., Miniquaternion Geometry, Cambridge University Press, 176s (1971).
  • Lam, C.W.H., Kolesova, G., Thiel, L. A., “Computer Search for Finite Projective Planes of Order 9”, Discrete Mathematics, 92: 187-195 (1991).
  • Lam, C.W.H., The Search for a Finite Projective Planes of Order 10. Computer Science Department, Concordia University, American Math. Monthly, 305-318 (1991).

SONLU MERTEBELİ BAZI PROJEKTİF DÜZLEMLER ÜZERİNE (Derleme)

Year 2005, Volume: 18 Issue: 2, 315 - 325, 13.08.2010

Abstract

Bu çalışmada 2, 3, 4, 5, 7, ve 8 mertebeli projektif düzlemlerin kuruluş metotları incelenmiş, bunların tekliklerine karşılık 9. mertebeden bilinen 4 farklı düzlemin elde edilişi ve bilgisayar araştırmalarına dayalı olarak 10. mertebeden bir projektif düzlemin yokluğu hakkındaki bilgiler derlenerek bir araya getirilmiştir

References

  • Tarry, G., Le Probleme des 36 Officiers, Compte Rendu de I’Association Française pour I’Avancement de Science Naturel, 1: 122-123 (1900).
  • Tarry, G., Le Probleme des 36 Officiers, Compte Rendu de I’Association Française pour I’Avancement de Science Naturel, 2: 170-203 (1901).
  • Bruck, R.H., Ryser H.J., “The Non-existence of Certain Finite Projective Planes”, Canadian Journal of Math., 1: 88- 93 (1949).
  • Batten, L.M., Combinatorics of Finite Geometries. Cambridge University Press, 43-44 (1986).
  • Kaya, R., Projektif Geometri. Anadolu Üniversitesi Yayınları. No:551. Eskişehir, 112-114 (1992).
  • Internet: Projective Plane of order 5. http://www.maths.monash.edu.au/~bpolster/pg5.html. (2004).
  • Beutelspacher, A., 21-6=15: A Connection Between Two Distinguished Geometries, Fachbereich Mathematik der Universitat, Saarstr. 21, D-6500 Mainz, Federal Republic of Germany, 29-40 (1986).
  • İnternet: Projective Plane of order 4. http://www.win.tue.nl/math/dw/pp/hansc/mathieu/node2.html. (2000).
  • Elkies, N., “Proof the Uniqueness of the Projective Plane of Order 5”, elkies@MATH.HARVARD.EDU. (2000).
  • Pierce, W.A., “The Impossibility of Fano’s Configuration in a Projective Plane with Eight Points Per Line”, Am. Math. Soc. Proc. ,4: 908-912 (1953).
  • Hall, M. JR., “Uniqueness of the Projective Plane with 57 Points”, Am. Math. Soc. Proc. , 4: 912-916 (1953).
  • Hall, M. JR., Correction to Uniqueness of the Projective Plane with 57 Points. Am. Math. Soc. Proc. , 5: 994-997 (1954).
  • Moufang, R., „Zur Struktur der Projektiven Geometrie der Ebene“, Math. Ann. , 105: 536-601 (1931).
  • Bose, R.C., “On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares”, Sankhya 3: 323-338 (1938).
  • Stevenson, F. W., Projective Planes. W. H. Freeman and Company, San Francisco, 416s (1972).
  • Laywine, C.F., Mullen, G.L., Discrete Mathematics Using Latin Squares, John Wiley&Sons., NewYork. 137-140 (1998).
  • Norton, H.W., “The 7×
  • Sade, A., “An omission in Norton’s list of 7×
  • Hall, M. JR., J.D. Swıft and R.J. Walker, Uniqueness of the Projective Plane of Order Eight. Math. Tables Aids. Comput. , 10: 186-194 (1956).
  • Hughes, D.R., Piper, F.C., Projective Planes. Springer – Verlag, New York Inc, 196-201 (1973).
  • Room, T.G., Kırkpatrıck, P.B., Miniquaternion Geometry, Cambridge University Press, 176s (1971).
  • Lam, C.W.H., Kolesova, G., Thiel, L. A., “Computer Search for Finite Projective Planes of Order 9”, Discrete Mathematics, 92: 187-195 (1991).
  • Lam, C.W.H., The Search for a Finite Projective Planes of Order 10. Computer Science Department, Concordia University, American Math. Monthly, 305-318 (1991).
There are 23 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Atilla Akpınar

Publication Date August 13, 2010
Published in Issue Year 2005 Volume: 18 Issue: 2

Cite

APA Akpınar, A. (2010). ON SOME PROJECTIVE PLANES OF FINITE ORDER. Gazi University Journal of Science, 18(2), 315-325.
AMA Akpınar A. ON SOME PROJECTIVE PLANES OF FINITE ORDER. Gazi University Journal of Science. August 2010;18(2):315-325.
Chicago Akpınar, Atilla. “ON SOME PROJECTIVE PLANES OF FINITE ORDER”. Gazi University Journal of Science 18, no. 2 (August 2010): 315-25.
EndNote Akpınar A (August 1, 2010) ON SOME PROJECTIVE PLANES OF FINITE ORDER. Gazi University Journal of Science 18 2 315–325.
IEEE A. Akpınar, “ON SOME PROJECTIVE PLANES OF FINITE ORDER”, Gazi University Journal of Science, vol. 18, no. 2, pp. 315–325, 2010.
ISNAD Akpınar, Atilla. “ON SOME PROJECTIVE PLANES OF FINITE ORDER”. Gazi University Journal of Science 18/2 (August 2010), 315-325.
JAMA Akpınar A. ON SOME PROJECTIVE PLANES OF FINITE ORDER. Gazi University Journal of Science. 2010;18:315–325.
MLA Akpınar, Atilla. “ON SOME PROJECTIVE PLANES OF FINITE ORDER”. Gazi University Journal of Science, vol. 18, no. 2, 2010, pp. 315-2.
Vancouver Akpınar A. ON SOME PROJECTIVE PLANES OF FINITE ORDER. Gazi University Journal of Science. 2010;18(2):315-2.