Aamri, M., Bennani, S., El Moutawakil, D., “Fixed points and variational principle in uniform spaces”, Siberian Electronic Mathematical Reports, 3: 137– 142 (2006).
Aamri, M., El Moutawakil, D., “Common Fixed Point Theorems for E-contractive or E-expansive Maps in Uniform Spaces”, Acta Math. Acad. Paedagog. Nyh´azi (N.S.), 20(1): 83-91(2004).
Berinde, V., “Iterative Approximation of Fixed Points”, Editura Efemeride, Baia Mare, (2002).
Berinde, V., “Contractii Generalizate si Aplicatii”, vol. 22, Editura Cub Press, Baia Mare, (1997).
Jachymski, J., “Fixed Point Theorems for Expansive Mappings”, Math. Japon., 42(1):131-136(1995).
Kada, O., Suzuki, T., Takahashi, W., “Nonconvex Minimization Theorems and Fixed Point Theorems in Complete Metric Spaces”, Math. Japon., 44(2): 381-391(1996).
Karapnar, E., “Fixed point theory for cyclic weak φ-contraction”, Appl.Math. Lett., 24(6): 822-825 (2011).
Karap nar, E., Sadarangani, K., “Fixed point theory for cyclic (φ−
ψ)-contractions”, Fixed Point Theory
1186/1687-1812-2011-69. 69, (2011) doi:
Kirk, W.A., Srinivasan, P.S., Veeramani, P., “Fixed points for mappings satisfying cyclical weak contractive conditions”, Fixed Point Theory, 4(1): 79–89(2003).
Pacurar, M., Rus, I.A., “Fixed point theory for cyclic ϕ-contractions”, Nonlinear Amal., 72: 1181- 1187(2010).
Rhoades, B.E., “A Comparison of Various Definitions of Contractive Mappings”, Trans. Amer. Math. Soc., 226: 257-290 (1977). [13] Rus, I.A., “Generalized Contractions and Applications”, Cluj University Press, Cluj-Napoca, (2001).
Rus, I.A., “Cyclic representations and fixed points”, Ann. T. Popoviciu, Seminar Funct. Eq. Approx. Convexity, 3: 171-178(2005).
De La Sen, M., “Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings”, Applications, Article ID 572057(2010). Point Theory and
Wang, S.Z., Li, B. Y., Gao, Z. M., Is´eki, K., “Some Fixed Point Theorems on Expansion Mappings”, Math. Japon., 29(4): 631-636(1984).
Zeidler, E., “Nonlinear Functional Analysis and its Applications”, Vol. 1, Springer- Verlag, New York, (1986).
Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces
In this paper, we apply the concept of cyclic(φ ) -contraction for presenting a fixed point theorem on Hausdorff uniform space. Some more general results are also obtained in Hausdorff uniform space.
Aamri, M., Bennani, S., El Moutawakil, D., “Fixed points and variational principle in uniform spaces”, Siberian Electronic Mathematical Reports, 3: 137– 142 (2006).
Aamri, M., El Moutawakil, D., “Common Fixed Point Theorems for E-contractive or E-expansive Maps in Uniform Spaces”, Acta Math. Acad. Paedagog. Nyh´azi (N.S.), 20(1): 83-91(2004).
Berinde, V., “Iterative Approximation of Fixed Points”, Editura Efemeride, Baia Mare, (2002).
Berinde, V., “Contractii Generalizate si Aplicatii”, vol. 22, Editura Cub Press, Baia Mare, (1997).
Jachymski, J., “Fixed Point Theorems for Expansive Mappings”, Math. Japon., 42(1):131-136(1995).
Kada, O., Suzuki, T., Takahashi, W., “Nonconvex Minimization Theorems and Fixed Point Theorems in Complete Metric Spaces”, Math. Japon., 44(2): 381-391(1996).
Karapnar, E., “Fixed point theory for cyclic weak φ-contraction”, Appl.Math. Lett., 24(6): 822-825 (2011).
Karap nar, E., Sadarangani, K., “Fixed point theory for cyclic (φ−
ψ)-contractions”, Fixed Point Theory
1186/1687-1812-2011-69. 69, (2011) doi:
Kirk, W.A., Srinivasan, P.S., Veeramani, P., “Fixed points for mappings satisfying cyclical weak contractive conditions”, Fixed Point Theory, 4(1): 79–89(2003).
Pacurar, M., Rus, I.A., “Fixed point theory for cyclic ϕ-contractions”, Nonlinear Amal., 72: 1181- 1187(2010).
Rhoades, B.E., “A Comparison of Various Definitions of Contractive Mappings”, Trans. Amer. Math. Soc., 226: 257-290 (1977). [13] Rus, I.A., “Generalized Contractions and Applications”, Cluj University Press, Cluj-Napoca, (2001).
Rus, I.A., “Cyclic representations and fixed points”, Ann. T. Popoviciu, Seminar Funct. Eq. Approx. Convexity, 3: 171-178(2005).
De La Sen, M., “Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings”, Applications, Article ID 572057(2010). Point Theory and
Wang, S.Z., Li, B. Y., Gao, Z. M., Is´eki, K., “Some Fixed Point Theorems on Expansion Mappings”, Math. Japon., 29(4): 631-636(1984).
Zeidler, E., “Nonlinear Functional Analysis and its Applications”, Vol. 1, Springer- Verlag, New York, (1986).
Sedghı, S., Shobkolaeı, N., & Fırouzıan, S. (2014). Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces. Gazi University Journal of Science, 27(1), 653-658.
AMA
Sedghı S, Shobkolaeı N, Fırouzıan S. Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces. Gazi University Journal of Science. Mart 2014;27(1):653-658.
Chicago
Sedghı, Shaban, Nabi Shobkolaeı, ve S. Fırouzıan. “Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces”. Gazi University Journal of Science 27, sy. 1 (Mart 2014): 653-58.
EndNote
Sedghı S, Shobkolaeı N, Fırouzıan S (01 Mart 2014) Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces. Gazi University Journal of Science 27 1 653–658.
IEEE
S. Sedghı, N. Shobkolaeı, ve S. Fırouzıan, “Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces”, Gazi University Journal of Science, c. 27, sy. 1, ss. 653–658, 2014.
ISNAD
Sedghı, Shaban vd. “Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces”. Gazi University Journal of Science 27/1 (Mart 2014), 653-658.
JAMA
Sedghı S, Shobkolaeı N, Fırouzıan S. Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces. Gazi University Journal of Science. 2014;27:653–658.
MLA
Sedghı, Shaban vd. “Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces”. Gazi University Journal of Science, c. 27, sy. 1, 2014, ss. 653-8.
Vancouver
Sedghı S, Shobkolaeı N, Fırouzıan S. Fixed Point Theory for Cyclic(φ ) - Contractions in Uniform Spaces. Gazi University Journal of Science. 2014;27(1):653-8.