Conference Paper
BibTex RIS Cite
Year 2014, Volume: 27 Issue: 4, 1045 - 1051, 19.04.2014

Abstract

References

  • [1] Mohamed A. Ramadan, Talaat S. EL-Danaf; Numerical treatment for the Modified Burger’s equation-2005.
  • [2] P.L. Sachdev; A class of exact solutions of boundary value problems for Burger’s equation.
  • [3] L.S. Andallah. Analytical & Numerical methods for PDE’’ lecture note, Department of Mathematics.Jahangirnagar University-2010.
  • [4] L.S. Andallah. “Finite difference Difference Methods – Explicit upwind Difference scheme, lecture note Department of Mathematics-J.U.
  • [5] Randall J.Leveque,“Numerical Methods for Conservation Laws”, second Edition -1992, Springer.
  • [6] F. Chorlton, “Fluid Dynamics” first Indian edition- 1985.
  • [7] Charles 1, Fefferman “Existence and smoothness of the Navier- Stokes Equation, Princeton University, Department of Mathematics Princeton
  • [8] J.D.Cole on a Quasilinear Parabolic Equation Occurring in Quart Appl Vol. 9, 225-236(1951)
  • [9] B.H.Batema, Some Recent Researches of the Motion of Fluid; Monthly Weather Rev,Vol. 43 pp.163-170.1915.
  • [10] A.R.Forsyth; Theory of differential equations. Vol 6. Cambridge Univ, press-1906.
  • [11] D.V Widder; The heat equation. Academic Press, 1975
  • [12] D.V.Widder, positive temperatures on an infinite rod Trans. Amer.Math, Sec. 55.(1944) pp. 85- 86
  • [13] Stephanie Roy “1D Burgers’ equation’’,(hyb56) [14] E.hopf, The partial Differential equation, Comm.

A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION

Year 2014, Volume: 27 Issue: 4, 1045 - 1051, 19.04.2014

Abstract

This paper represents a comparative study of the Lax-Friedrich scheme and Lax-Wendroff’s scheme for the numerical solution of Burger’s equation. Performing  the numerical computation of the Burger’s equation by using the first order and second order schemes respectively, we verify the numerical features like accuracy, rate of convergence and efficiency of the schemes for given initial and boundary values

References

  • [1] Mohamed A. Ramadan, Talaat S. EL-Danaf; Numerical treatment for the Modified Burger’s equation-2005.
  • [2] P.L. Sachdev; A class of exact solutions of boundary value problems for Burger’s equation.
  • [3] L.S. Andallah. Analytical & Numerical methods for PDE’’ lecture note, Department of Mathematics.Jahangirnagar University-2010.
  • [4] L.S. Andallah. “Finite difference Difference Methods – Explicit upwind Difference scheme, lecture note Department of Mathematics-J.U.
  • [5] Randall J.Leveque,“Numerical Methods for Conservation Laws”, second Edition -1992, Springer.
  • [6] F. Chorlton, “Fluid Dynamics” first Indian edition- 1985.
  • [7] Charles 1, Fefferman “Existence and smoothness of the Navier- Stokes Equation, Princeton University, Department of Mathematics Princeton
  • [8] J.D.Cole on a Quasilinear Parabolic Equation Occurring in Quart Appl Vol. 9, 225-236(1951)
  • [9] B.H.Batema, Some Recent Researches of the Motion of Fluid; Monthly Weather Rev,Vol. 43 pp.163-170.1915.
  • [10] A.R.Forsyth; Theory of differential equations. Vol 6. Cambridge Univ, press-1906.
  • [11] D.V Widder; The heat equation. Academic Press, 1975
  • [12] D.V.Widder, positive temperatures on an infinite rod Trans. Amer.Math, Sec. 55.(1944) pp. 85- 86
  • [13] Stephanie Roy “1D Burgers’ equation’’,(hyb56) [14] E.hopf, The partial Differential equation, Comm.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

M. A. Sheikh This is me

Laek Andallah This is me

Arefin Kowser

Publication Date April 19, 2014
Published in Issue Year 2014 Volume: 27 Issue: 4

Cite

APA Sheikh, M. A., Andallah, L., & Kowser, A. (2014). A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION. Gazi University Journal of Science, 27(4), 1045-1051.
AMA Sheikh MA, Andallah L, Kowser A. A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION. Gazi University Journal of Science. November 2014;27(4):1045-1051.
Chicago Sheikh, M. A., Laek Andallah, and Arefin Kowser. “A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION”. Gazi University Journal of Science 27, no. 4 (November 2014): 1045-51.
EndNote Sheikh MA, Andallah L, Kowser A (November 1, 2014) A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION. Gazi University Journal of Science 27 4 1045–1051.
IEEE M. A. Sheikh, L. Andallah, and A. Kowser, “A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION”, Gazi University Journal of Science, vol. 27, no. 4, pp. 1045–1051, 2014.
ISNAD Sheikh, M. A. et al. “A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION”. Gazi University Journal of Science 27/4 (November 2014), 1045-1051.
JAMA Sheikh MA, Andallah L, Kowser A. A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION. Gazi University Journal of Science. 2014;27:1045–1051.
MLA Sheikh, M. A. et al. “A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION”. Gazi University Journal of Science, vol. 27, no. 4, 2014, pp. 1045-51.
Vancouver Sheikh MA, Andallah L, Kowser A. A COMPARATIVE STUDY OF FINITE DIFFERENCE SCHEME FOR BURGER’S EQUATION. Gazi University Journal of Science. 2014;27(4):1045-51.