BibTex RIS Cite

On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class

Year 2015, Volume: 28 Issue: 2, 211 - 219, 22.06.2015

Abstract

ON A FIXED POINT THEOREM WITH PPF DEPENDENCE IN THE RAZUMIKHIN CLASS

References

  • V. Berinde, “Approximating fixed points of weak contractionsusing the Picard iteration”,Nonlinear Analysis Forum, vol. 9(1)(2004), pp. 43–53.
  • S. R. Bernfeld, V. Lakshmikantham, and Y. M. Reddy, “Fixedpoint theorems of operators with PPF dependence in Banachspaces”,Applicable Analysis, vol. 6(4)(1997), pp. 271–280.
  • S. K. Chatterjea, “Fixed-point theorems”,Comptes Rendus de l’Acad´emieBulgare des Sciences, vol. 25(1972), pp. 727–730.
  • Lj. B. Ciri´c, “A generalization of Banach’s contraction principle”, Proceedings of the American Mathematical Society, vol. 45(1974), pp. 267–273.
  • B. K. Dass and S. Gupta, “An extension of Banach contraction principle through rational expression”,Indian Journal 6(12)(1975), pp. 1455–1458.
  • B.C.Dhage, “On some common fixed point theorems with PPF dependence in Banach spaces”, Journal of Nonlinear Science andIts Applications, vol. 5(3)(2012), pp. 220–232. Mathematics, vol.
  • Z. Drici, F. A. McRae, and J. Vasundhara Devi, “Fixed-point theorems in partially ordered metric spaces for operatorswith PPF dependence”,Nonlinear Analysis: Theory, Methods & Applications A, vol. 67(2)(2007), , pp. 641–647. M. mappings”,Proceedings of the American Mathematical Society, vol. 40(1973), pp. 604–608. “On contractive
  • D. S. Jaggi, “Some unique fixed point theorems”,Indian AppliedMathematics, vol. 8(2)(1977), pp. 223–230. of Pure and M. Jleli, V.C.Rajie, B.Samet and C.Vetro, “Fixed point theorems on ordered metric spaces and application to nonlinear elastic beam equations”,J. Fixed Point
  • Theory and applications, vol.12(1-2)(2012), 175-192.
  • R. Kannan, “Some results on fixed points—II”,The American Mathematical Monthly, vol. 76(1969), pp. 405– 40
  • M.A. Kutbi and W. Sintunavarat “On sufficient conditions for the existence of past-present-future
Year 2015, Volume: 28 Issue: 2, 211 - 219, 22.06.2015

Abstract

References

  • V. Berinde, “Approximating fixed points of weak contractionsusing the Picard iteration”,Nonlinear Analysis Forum, vol. 9(1)(2004), pp. 43–53.
  • S. R. Bernfeld, V. Lakshmikantham, and Y. M. Reddy, “Fixedpoint theorems of operators with PPF dependence in Banachspaces”,Applicable Analysis, vol. 6(4)(1997), pp. 271–280.
  • S. K. Chatterjea, “Fixed-point theorems”,Comptes Rendus de l’Acad´emieBulgare des Sciences, vol. 25(1972), pp. 727–730.
  • Lj. B. Ciri´c, “A generalization of Banach’s contraction principle”, Proceedings of the American Mathematical Society, vol. 45(1974), pp. 267–273.
  • B. K. Dass and S. Gupta, “An extension of Banach contraction principle through rational expression”,Indian Journal 6(12)(1975), pp. 1455–1458.
  • B.C.Dhage, “On some common fixed point theorems with PPF dependence in Banach spaces”, Journal of Nonlinear Science andIts Applications, vol. 5(3)(2012), pp. 220–232. Mathematics, vol.
  • Z. Drici, F. A. McRae, and J. Vasundhara Devi, “Fixed-point theorems in partially ordered metric spaces for operatorswith PPF dependence”,Nonlinear Analysis: Theory, Methods & Applications A, vol. 67(2)(2007), , pp. 641–647. M. mappings”,Proceedings of the American Mathematical Society, vol. 40(1973), pp. 604–608. “On contractive
  • D. S. Jaggi, “Some unique fixed point theorems”,Indian AppliedMathematics, vol. 8(2)(1977), pp. 223–230. of Pure and M. Jleli, V.C.Rajie, B.Samet and C.Vetro, “Fixed point theorems on ordered metric spaces and application to nonlinear elastic beam equations”,J. Fixed Point
  • Theory and applications, vol.12(1-2)(2012), 175-192.
  • R. Kannan, “Some results on fixed points—II”,The American Mathematical Monthly, vol. 76(1969), pp. 405– 40
  • M.A. Kutbi and W. Sintunavarat “On sufficient conditions for the existence of past-present-future
There are 11 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Mohammad Khan

Pankaj Jhade

Publication Date June 22, 2015
Published in Issue Year 2015 Volume: 28 Issue: 2

Cite

APA Khan, M., & Jhade, P. (2015). On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class. Gazi University Journal of Science, 28(2), 211-219.
AMA Khan M, Jhade P. On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class. Gazi University Journal of Science. June 2015;28(2):211-219.
Chicago Khan, Mohammad, and Pankaj Jhade. “On A Fixed Point Theorem With PPF Dependance in the Razumikhin Class”. Gazi University Journal of Science 28, no. 2 (June 2015): 211-19.
EndNote Khan M, Jhade P (June 1, 2015) On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class. Gazi University Journal of Science 28 2 211–219.
IEEE M. Khan and P. Jhade, “On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class”, Gazi University Journal of Science, vol. 28, no. 2, pp. 211–219, 2015.
ISNAD Khan, Mohammad - Jhade, Pankaj. “On A Fixed Point Theorem With PPF Dependance in the Razumikhin Class”. Gazi University Journal of Science 28/2 (June 2015), 211-219.
JAMA Khan M, Jhade P. On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class. Gazi University Journal of Science. 2015;28:211–219.
MLA Khan, Mohammad and Pankaj Jhade. “On A Fixed Point Theorem With PPF Dependance in the Razumikhin Class”. Gazi University Journal of Science, vol. 28, no. 2, 2015, pp. 211-9.
Vancouver Khan M, Jhade P. On A Fixed Point Theorem with PPF Dependance in the Razumikhin Class. Gazi University Journal of Science. 2015;28(2):211-9.