Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Structurally Integrated Surface Articulation (SISA) Panels for Architectural Engineering Applications

Yıl 2024, Cilt: 1 Sayı: 2, 102 - 114, 27.10.2024
https://doi.org/10.5281/zenodo.13996542

Öz

This research explores the efficiency of a newly developed Structurally Integrated Surface Articulation (SISA) system for a variety of structural engineering applications, such as exterior building facades and solar panels. SISA is a modular system that consists of dynamically adjustable three-dimensional surface panels supported by an internal wire-frame space structure. The articulation techniques vary depending on the specific function of the panels, with configurations designed to optimize structural performance through composite action between the outer surface panels and the internal frame. Materials such as plastic, smart glass, and sheet metal are evaluated in conjunction with polyhedral and honeycomb configurations, including tetrahedral and convex polygonal forms. The research emphasizes enhancing large-scale structural efficiency by integrating modern frame systems with surface articulation. It also explores the evolution of architectural design and presents case studies using SISA-based structures to highlight the potential improvements in structural integrity. By addressing both material properties and design techniques, the study aims to demonstrate how the SISA system can provide significant advancements in architectural engineering.

Kaynakça

  • [1] Rybczynski, W., “The Look of Architecture”, 12-4, Oxford University Press, New York, 2001.
  • [2] Richardson, A.E., Corfiato, H.O., “Design in Civil Architecture”, 20, English Universities Press, London, 1948.
  • [3] Brawne, M., “Architectural Thought: The Design Process and the Expectant Eye”, 7-8, 123, Elsevier, Amsterdam, 2003.
  • [4] Jain, M., “Articulation of Form”, LinkedIn SlideShare, https://www.slideshare.net/slideshow/articulation-of-form/72066220, February 12, 2017, Retrieved September 12, 2024.
  • [5] Sev, A., Tuğrul, F., “Integration of Architectural Design with Structural Form in Non-Orthogonal High-Rise Buildings”, Journal of Sustainable Architecture and Civil Engineering, Vol. 7, Issue 2, Pages 31-42, 2014.
  • [6] UN-HABITAT, “State of the World’s Cities 2008/2009: Harmonious Cities”, 59, 224, UN-HABITAT, Kenya, 2008.
  • [7] Ferdous, W., Bai, Y., Ngo, T.D., Manalo, A., Mendis, P., “New Advancements, Challenges and Opportunities of Multi-Storey Modular Buildings – A State-of-the-Art Review”, Engineering Structures, Vol. 183, Pages 883-893, 2019.
  • [8] Generalova, E.M., Generalov, V.P., Kuznetsova, A.A., “Modular Buildings in Modern Construction”, Procedia Engineering, Vol. 153, Pages 167-172, 2016.
  • [9] Kendle Design, “Kendle Design Collaborative Desert Wing”, https://www.kendledesign.com/, September 12, 2024.
  • [10] Brazil, R., “Rick Brazil Photography”, ArchDaily, https://www.archdaily.com/photographer/rick-brazil, September 12, 2024.
  • [11] Pala, E.E., “A Critical Analysis of High-Rise Housing Blocks: The Case of South-Western Ankara”, Master’s Thesis, Middle East Technical University, Graduate School of Natural and Applied Sciences, 2023.
  • [12] Davidson, S., “Generating Fractal Space Frames”, Grasshopper, https://www.grasshopper3d.com/m/blogpost?id=2985220%3ABlogPost%3A1085565, 2018.
  • [13] ArchDaily, “Heydar Aliyev Center / Zaha Hadid Architects”, https://www.archdaily.com/448774/heydar-aliyev-center-zaha-hadid-architects, 2013.
  • [14] Hufton + Crow, “Heydar Aliyev Cultural Centre”, Arkitektuel, https://www.arkitektuel.com/haydar-aliyev-kultur-merkezi/, n.d., Retrieved September 12, 2024.
  • [15] Akpan Umoh, A., Nwasike, C.N., Tula, O.A., Adekoya, O.O., Gidiagba, J.O., “A Review of Smart Green Building Technologies: Investigating the Integration and Impact of AI and IoT in Sustainable Building Designs”, Computer Science & IT Research Journal, Vol. 5, Issue 1, Pages 141-165, 2024.
  • [16] Farmer, G., Guy, S., “Hybrid Environments: The Spaces of Sustainable Design”, in Sustainable Architectures, 1st ed., Pages 1-16, Routledge, 2004.
  • [17] Von Grabe, J., Gampfer, S., Winter, S., Kaufmann, H., “Concepts for Sustainable Building Technology”, in Proceedings of the 1st Central European Symposium on Building Physics, 2009.
  • [18] ArchDaily, “Origami / Manuelle Gautrand Architecture”, https://www.archdaily.com/448940/origami-manuelle-gautrand-architecture, 2013.
  • [19] Archilovers, “Origami Office Building Gallery”, https://www.archilovers.com/projects/51866/origami-office-building-gallery?353117, n.d., Retrieved September 13, 2024.
  • [20] Hassan, H.Z., Saeed, N.M., “Advancements and Applications of Lightweight Structures: A Comprehensive Review”, Discovery Civil Engineering, Vol. 1, Article 47, 2024.
  • [21] Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., Skerlos, S., “Life Cycle Engineering of Lightweight Structures”, CIRP Annals, Vol. 67, Issue 2, Pages 651–672, 2018.
  • [22] Shawkat, S., “Lightweight Structures from the Perspective of Form Finding for Architects and Designers”, in Proceedings of DARCH, Vol. 2021, No. 1, 2021.
  • [23] Baxter, A. “Hearst Tower: Low-Angle View” [Photograph], Getty Images, https://www.gettyimages.ae/detail/photo/hearst-tower-low-angle-view-royalty-free-image/sb10065293h-001, January 4, 2008,
  • [24] Del Grosso, A.E., Basso, P., “Adaptive building skin structures”, Smart Materials and Structures, Vol. 19, Issue 12, Page 124011, 2010.
  • [25] Blanco, D., Rubio, E.M., Lorente-Pedreille, R.M., Sáenz-Nuño, M.A., “Lightweight Structural Materials in Open Access: Latest Trends”, Materials, Vol. 14, Issue 21, Article 6577, 2021.
  • [26] Bizley, G., Architecture in Detail, 1st ed., Page 3, Oxford: Architectural Press, 2008.
  • [27] The Institution of Structural Engineers (IStructE), Structural Use of Glass in Buildings, 2nd ed., Pages 8-9, Institution of Structural Engineers, 2015. ISBN 978-1-906335-25-0.
  • [28] Haldimann, M., Luible, A., & Overend, M., Structural Use of Glass, International Association for Bridge and Structural Engineering, 2008.
  • [29] Chilton, J., Space Grid Structures, 1st ed., Pages 1, 2, 3, 12, 16, 17, 79, 156, 157, 159, 160, 163, 164, 168, Architectural Press, an imprint of Butterworth-Heinemann, a division of Reed Educational and Professional Publishing Ltd., 2000. ISBN 0-7506-3275-5.
  • [30] Archi-Monarch, “Space frame structure”, https://archi-monarch.com/space-frame-structure/, September 13, 2024.
  • [31] Megson, T.H.G., Structural and Stress Analysis, 4th ed., Pages 12-14, Butterworth-Heinemann Publishing, 2019.
  • [32] Hause, T. J., “Sandwich Structures: Theory and Responses”, Springer International Publishing, 1-5, 2021.
  • [33] Pavlov, L., Kloeze, I. T., Smeets, B. J. R., Menzo, S., Simonian, S., “Development of Mass and Cost Efficient Grid-Stiffened and Lattice Structures for Space Applications”, Conference Proceedings, 27-30 September 2016, Toulouse, France.
  • [34] Murthy, V. C. A. D., Santhanakrishnanan, S., “Isogrid Lattice Structure for Armouring Applications”, Procedia Manufacturing, Vol. 48, e1-e11, 2020.
  • [35] Giusto, G., Totaro, G., Spena, P., De Nicola, F., Di Caprio, F., Zallo, A., Grilli, A., Mancini, V., Kiryenko, S., Das, S., Mespoulet, S., “Composite Grid Structure Technology for Space Applications”, Materials Today: Proceedings, Vol. 34, Issue 1, 332-340, 2021.
  • [36] Huang, R., Dai, N., Pan, C., Yang, Y., Jiang, X., Tian, S., Zhang, Z., “Grid-Tree Composite Support Structures for Lattice Parts in Selective Laser Melting”, Materials & Design, Vol. 225, 111499, 2023.
  • [37] Arsidkot, “Space frame arsitektur”, Archidkot, https://archidkot.blogspot.com/2016/02/space-frame-arsitektur.html, September 13, 2024.
  • [38] Smith, C. B., Mishra, R. S., “Fundamentals of Formability”, in Smith, C. B., Mishra, R. S. (Eds.), Friction Stir Processing for Enhanced Low Temperature Formability, 7-9, Butterworth-Heinemann, 2014.
  • [39] Formlabs, “Sheet metal forming”, Formlabs, https://formlabs.com/asia/blog/sheet-metal-forming/, September 17, 2024.
  • [40] Ramezani, M., Ripin, Z. M., “Introduction to Sheet Metal Forming Processes”, in Ramezani, M., Ripin, Z. M. (Eds.), Rubber-Pad Forming Processes, 1-22, Woodhead Publishing, 2012.
  • [41] Ohring, M. (Ed.), “Materials Processing and Forming Operations”, in Engineering Materials Science, 371-IX, Academic Press, 1995.
  • [42] Achintha, M., “Sustainability of Glass in Construction”, in Khatib, J. M. (Ed.), Sustainability of Construction Materials, 2nd ed., 79-104, Woodhead Publishing, 2016.
  • [43] Yildirim, F. N., Achintha, M., “Glass–GFRP Laminate: A Proof of Concept Experimental Investigation”, Journal of Building Engineering, Vol. 85, Article 108733, 2024.
  • [44] Haldimann, M., Luible, A., Overend, M., “Structural Use of Glass”, International Association for Bridge and Structural Engineering, 2008.
  • [45] Institution of Structural Engineers, “Structural Use of Glass in Buildings”, SETO, London, 2015.
  • [46] Heger, F. J., Sharff, P. A., “Buildings: Plastics and Composites”, in Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P. (Eds.), Encyclopedia of Materials: Science and Technology, 833-841, Elsevier, 2001.
  • [47] Shrivastava, A., “Plastics Part Design and Application”, in Shrivastava, A. (Ed.), Introduction to Plastics Engineering, 179-205, William Andrew Publishing, 2018.
  • [48] Rong, C., “Engineering Application of Steel Frame Confined Concrete Column”, in Rong, C. (Ed.), Concrete Composite Columns, 371-415, Woodhead Publishing, 2023.
  • [49] Fan, M., “Sustainable Fibre-Reinforced Polymer Composites in Construction”, in Goodship, V. (Ed.), Management, Recycling and Reuse of Waste Composites, 520-568, Woodhead Publishing, 2010.
  • [50] Majewski, J., Pastuszka, L., Bierzanowski, T., “L House” [Digital image], in Jakub Majewski et al., Retrieved from https://www.archdaily.com/30993/l-house-moomoo-architects, 2009.
  • [51] Li, D., Slater, C., Cai, H., Hou, X., Li, Y., Wang, Q., “Joining Technologies for Aluminium Castings—A Review”, Coatings, Vol. 13, Issue 5, 958, 2023.
  • [52] Sharma, N., Sehrawat, R., Lal, S., “A Short Review on the Developments of Aluminium Matrix Composites”, Materials Today: Proceedings, 2023.
  • [53] Dutta, A., Pal, S., Panda, S., “A Novel Method of Fabricating Aluminium Honeycomb Core by Friction Stir Welding”, Thin-Walled Structures, Vol. 193, 111262, 2023.
  • [54] Merriam-Webster, “Disphenoid”, https://www.merriam-webster.com/dictionary/disphenoid , September 18, 2024.
  • [55] Rechneronline,“Disphenoid”,https://rechneronline.de/pi/disphenoid-e.php, retrieved September 18, 2024.
  • [56] Kiper, G., "Design methods for planar and spatial deployable structures", Doctoral Thesis, Middle East Technical University, Ankara, 2011.
  • [57] Quickfur, “Another CRF Idea Inspired by Snub Disphenoid” [Digital image], Retrieved from http://hi.gher.space/forum/viewtopic.php?f=32&t=2250, 2017.
  • [58] Conway, J.H., Burgiel, H., Goodman-Strauss, C., "The Symmetries of Things", 1st ed., A K Peters/CRC Press, 2008.
  • [59] Trujillo-Pino, A., Suárez, J.P., Padrón, M.A., "Finite number of similarity classes in Longest Edge Bisection of nearly equilateral tetrahedra", Applied Mathematics and Computation, Vol. 472, 128631, 2024.
  • [60] Vyzoviti, S., “Folding Architecture: Spatial, Structural, and Organizational Diagrams”, BIS, 11, 131, 2004.
  • [61] Library and Archives Canada, “Postcard of the Canadian Government Pavilion at Expo '67 in Montreal” [Postcard], Library and Archives Canada, n.d.
  • [62] Clapham, C., Nicholson, J., "The Concise Oxford Dictionary of Mathematics", 4th ed., Oxford University Press, 2009.
  • [63] LMNTechStudio, "The Octahedron", Arch2o, n.d., https://www.arch2o.com/the-octahedron-lmntechstudio/. Accessed September 18, 2024.

Mimari Mühendislik Uygulamaları için Yapısal Olarak Entegre Yüzey Artikülasyon (SISA) Panellerinin Değerlendirilmesi

Yıl 2024, Cilt: 1 Sayı: 2, 102 - 114, 27.10.2024
https://doi.org/10.5281/zenodo.13996542

Öz

Bu araştırma, dış cephe kaplamaları ve güneş panelleri gibi çeşitli yapısal mühendislik uygulamaları için geliştirilen yeni bir Yüzey Artikulasyonu ile Yapısal Olarak Entegre (SISA) sistemin verimliliğini incelemektedir. SISA, içte bir tel-kafes yapı tarafından desteklenen dinamik olarak ayarlanabilir üç boyutlu yüzey panellerinden oluşan modüler bir sistemdir. Artikulasyon teknikleri, panellerin özel işlevine bağlı olarak değişmekte ve dış yüzey panelleri ile iç yapı arasındaki kompozit etki sayesinde yapısal performansı optimize edecek şekilde yapılandırılmaktadır. Araştırmada plastik, akıllı cam ve sac metal gibi malzemeler ile tetrahedral ve dışbükey çokgen formlar gibi çokyüzlü ve petek konfigürasyonlar değerlendirilmektedir. Çalışma, modern çerçeve sistemlerini yüzey artikulasyonu ile entegre ederek büyük ölçekli yapısal verimliliği artırmayı vurgulamaktadır. Ayrıca mimari tasarımın evrimini inceleyerek, SISA tabanlı yapıları kullanarak yapısal bütünlükteki olası iyileştirmeleri vurgulayan vaka çalışmalarını sunmaktadır. Hem malzeme özelliklerini hem de tasarım tekniklerini ele alarak, bu çalışma SISA sisteminin mimari mühendislikte önemli gelişmeler sağlayabileceğini göstermeyi amaçlamaktadır.

Kaynakça

  • [1] Rybczynski, W., “The Look of Architecture”, 12-4, Oxford University Press, New York, 2001.
  • [2] Richardson, A.E., Corfiato, H.O., “Design in Civil Architecture”, 20, English Universities Press, London, 1948.
  • [3] Brawne, M., “Architectural Thought: The Design Process and the Expectant Eye”, 7-8, 123, Elsevier, Amsterdam, 2003.
  • [4] Jain, M., “Articulation of Form”, LinkedIn SlideShare, https://www.slideshare.net/slideshow/articulation-of-form/72066220, February 12, 2017, Retrieved September 12, 2024.
  • [5] Sev, A., Tuğrul, F., “Integration of Architectural Design with Structural Form in Non-Orthogonal High-Rise Buildings”, Journal of Sustainable Architecture and Civil Engineering, Vol. 7, Issue 2, Pages 31-42, 2014.
  • [6] UN-HABITAT, “State of the World’s Cities 2008/2009: Harmonious Cities”, 59, 224, UN-HABITAT, Kenya, 2008.
  • [7] Ferdous, W., Bai, Y., Ngo, T.D., Manalo, A., Mendis, P., “New Advancements, Challenges and Opportunities of Multi-Storey Modular Buildings – A State-of-the-Art Review”, Engineering Structures, Vol. 183, Pages 883-893, 2019.
  • [8] Generalova, E.M., Generalov, V.P., Kuznetsova, A.A., “Modular Buildings in Modern Construction”, Procedia Engineering, Vol. 153, Pages 167-172, 2016.
  • [9] Kendle Design, “Kendle Design Collaborative Desert Wing”, https://www.kendledesign.com/, September 12, 2024.
  • [10] Brazil, R., “Rick Brazil Photography”, ArchDaily, https://www.archdaily.com/photographer/rick-brazil, September 12, 2024.
  • [11] Pala, E.E., “A Critical Analysis of High-Rise Housing Blocks: The Case of South-Western Ankara”, Master’s Thesis, Middle East Technical University, Graduate School of Natural and Applied Sciences, 2023.
  • [12] Davidson, S., “Generating Fractal Space Frames”, Grasshopper, https://www.grasshopper3d.com/m/blogpost?id=2985220%3ABlogPost%3A1085565, 2018.
  • [13] ArchDaily, “Heydar Aliyev Center / Zaha Hadid Architects”, https://www.archdaily.com/448774/heydar-aliyev-center-zaha-hadid-architects, 2013.
  • [14] Hufton + Crow, “Heydar Aliyev Cultural Centre”, Arkitektuel, https://www.arkitektuel.com/haydar-aliyev-kultur-merkezi/, n.d., Retrieved September 12, 2024.
  • [15] Akpan Umoh, A., Nwasike, C.N., Tula, O.A., Adekoya, O.O., Gidiagba, J.O., “A Review of Smart Green Building Technologies: Investigating the Integration and Impact of AI and IoT in Sustainable Building Designs”, Computer Science & IT Research Journal, Vol. 5, Issue 1, Pages 141-165, 2024.
  • [16] Farmer, G., Guy, S., “Hybrid Environments: The Spaces of Sustainable Design”, in Sustainable Architectures, 1st ed., Pages 1-16, Routledge, 2004.
  • [17] Von Grabe, J., Gampfer, S., Winter, S., Kaufmann, H., “Concepts for Sustainable Building Technology”, in Proceedings of the 1st Central European Symposium on Building Physics, 2009.
  • [18] ArchDaily, “Origami / Manuelle Gautrand Architecture”, https://www.archdaily.com/448940/origami-manuelle-gautrand-architecture, 2013.
  • [19] Archilovers, “Origami Office Building Gallery”, https://www.archilovers.com/projects/51866/origami-office-building-gallery?353117, n.d., Retrieved September 13, 2024.
  • [20] Hassan, H.Z., Saeed, N.M., “Advancements and Applications of Lightweight Structures: A Comprehensive Review”, Discovery Civil Engineering, Vol. 1, Article 47, 2024.
  • [21] Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., Skerlos, S., “Life Cycle Engineering of Lightweight Structures”, CIRP Annals, Vol. 67, Issue 2, Pages 651–672, 2018.
  • [22] Shawkat, S., “Lightweight Structures from the Perspective of Form Finding for Architects and Designers”, in Proceedings of DARCH, Vol. 2021, No. 1, 2021.
  • [23] Baxter, A. “Hearst Tower: Low-Angle View” [Photograph], Getty Images, https://www.gettyimages.ae/detail/photo/hearst-tower-low-angle-view-royalty-free-image/sb10065293h-001, January 4, 2008,
  • [24] Del Grosso, A.E., Basso, P., “Adaptive building skin structures”, Smart Materials and Structures, Vol. 19, Issue 12, Page 124011, 2010.
  • [25] Blanco, D., Rubio, E.M., Lorente-Pedreille, R.M., Sáenz-Nuño, M.A., “Lightweight Structural Materials in Open Access: Latest Trends”, Materials, Vol. 14, Issue 21, Article 6577, 2021.
  • [26] Bizley, G., Architecture in Detail, 1st ed., Page 3, Oxford: Architectural Press, 2008.
  • [27] The Institution of Structural Engineers (IStructE), Structural Use of Glass in Buildings, 2nd ed., Pages 8-9, Institution of Structural Engineers, 2015. ISBN 978-1-906335-25-0.
  • [28] Haldimann, M., Luible, A., & Overend, M., Structural Use of Glass, International Association for Bridge and Structural Engineering, 2008.
  • [29] Chilton, J., Space Grid Structures, 1st ed., Pages 1, 2, 3, 12, 16, 17, 79, 156, 157, 159, 160, 163, 164, 168, Architectural Press, an imprint of Butterworth-Heinemann, a division of Reed Educational and Professional Publishing Ltd., 2000. ISBN 0-7506-3275-5.
  • [30] Archi-Monarch, “Space frame structure”, https://archi-monarch.com/space-frame-structure/, September 13, 2024.
  • [31] Megson, T.H.G., Structural and Stress Analysis, 4th ed., Pages 12-14, Butterworth-Heinemann Publishing, 2019.
  • [32] Hause, T. J., “Sandwich Structures: Theory and Responses”, Springer International Publishing, 1-5, 2021.
  • [33] Pavlov, L., Kloeze, I. T., Smeets, B. J. R., Menzo, S., Simonian, S., “Development of Mass and Cost Efficient Grid-Stiffened and Lattice Structures for Space Applications”, Conference Proceedings, 27-30 September 2016, Toulouse, France.
  • [34] Murthy, V. C. A. D., Santhanakrishnanan, S., “Isogrid Lattice Structure for Armouring Applications”, Procedia Manufacturing, Vol. 48, e1-e11, 2020.
  • [35] Giusto, G., Totaro, G., Spena, P., De Nicola, F., Di Caprio, F., Zallo, A., Grilli, A., Mancini, V., Kiryenko, S., Das, S., Mespoulet, S., “Composite Grid Structure Technology for Space Applications”, Materials Today: Proceedings, Vol. 34, Issue 1, 332-340, 2021.
  • [36] Huang, R., Dai, N., Pan, C., Yang, Y., Jiang, X., Tian, S., Zhang, Z., “Grid-Tree Composite Support Structures for Lattice Parts in Selective Laser Melting”, Materials & Design, Vol. 225, 111499, 2023.
  • [37] Arsidkot, “Space frame arsitektur”, Archidkot, https://archidkot.blogspot.com/2016/02/space-frame-arsitektur.html, September 13, 2024.
  • [38] Smith, C. B., Mishra, R. S., “Fundamentals of Formability”, in Smith, C. B., Mishra, R. S. (Eds.), Friction Stir Processing for Enhanced Low Temperature Formability, 7-9, Butterworth-Heinemann, 2014.
  • [39] Formlabs, “Sheet metal forming”, Formlabs, https://formlabs.com/asia/blog/sheet-metal-forming/, September 17, 2024.
  • [40] Ramezani, M., Ripin, Z. M., “Introduction to Sheet Metal Forming Processes”, in Ramezani, M., Ripin, Z. M. (Eds.), Rubber-Pad Forming Processes, 1-22, Woodhead Publishing, 2012.
  • [41] Ohring, M. (Ed.), “Materials Processing and Forming Operations”, in Engineering Materials Science, 371-IX, Academic Press, 1995.
  • [42] Achintha, M., “Sustainability of Glass in Construction”, in Khatib, J. M. (Ed.), Sustainability of Construction Materials, 2nd ed., 79-104, Woodhead Publishing, 2016.
  • [43] Yildirim, F. N., Achintha, M., “Glass–GFRP Laminate: A Proof of Concept Experimental Investigation”, Journal of Building Engineering, Vol. 85, Article 108733, 2024.
  • [44] Haldimann, M., Luible, A., Overend, M., “Structural Use of Glass”, International Association for Bridge and Structural Engineering, 2008.
  • [45] Institution of Structural Engineers, “Structural Use of Glass in Buildings”, SETO, London, 2015.
  • [46] Heger, F. J., Sharff, P. A., “Buildings: Plastics and Composites”, in Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P. (Eds.), Encyclopedia of Materials: Science and Technology, 833-841, Elsevier, 2001.
  • [47] Shrivastava, A., “Plastics Part Design and Application”, in Shrivastava, A. (Ed.), Introduction to Plastics Engineering, 179-205, William Andrew Publishing, 2018.
  • [48] Rong, C., “Engineering Application of Steel Frame Confined Concrete Column”, in Rong, C. (Ed.), Concrete Composite Columns, 371-415, Woodhead Publishing, 2023.
  • [49] Fan, M., “Sustainable Fibre-Reinforced Polymer Composites in Construction”, in Goodship, V. (Ed.), Management, Recycling and Reuse of Waste Composites, 520-568, Woodhead Publishing, 2010.
  • [50] Majewski, J., Pastuszka, L., Bierzanowski, T., “L House” [Digital image], in Jakub Majewski et al., Retrieved from https://www.archdaily.com/30993/l-house-moomoo-architects, 2009.
  • [51] Li, D., Slater, C., Cai, H., Hou, X., Li, Y., Wang, Q., “Joining Technologies for Aluminium Castings—A Review”, Coatings, Vol. 13, Issue 5, 958, 2023.
  • [52] Sharma, N., Sehrawat, R., Lal, S., “A Short Review on the Developments of Aluminium Matrix Composites”, Materials Today: Proceedings, 2023.
  • [53] Dutta, A., Pal, S., Panda, S., “A Novel Method of Fabricating Aluminium Honeycomb Core by Friction Stir Welding”, Thin-Walled Structures, Vol. 193, 111262, 2023.
  • [54] Merriam-Webster, “Disphenoid”, https://www.merriam-webster.com/dictionary/disphenoid , September 18, 2024.
  • [55] Rechneronline,“Disphenoid”,https://rechneronline.de/pi/disphenoid-e.php, retrieved September 18, 2024.
  • [56] Kiper, G., "Design methods for planar and spatial deployable structures", Doctoral Thesis, Middle East Technical University, Ankara, 2011.
  • [57] Quickfur, “Another CRF Idea Inspired by Snub Disphenoid” [Digital image], Retrieved from http://hi.gher.space/forum/viewtopic.php?f=32&t=2250, 2017.
  • [58] Conway, J.H., Burgiel, H., Goodman-Strauss, C., "The Symmetries of Things", 1st ed., A K Peters/CRC Press, 2008.
  • [59] Trujillo-Pino, A., Suárez, J.P., Padrón, M.A., "Finite number of similarity classes in Longest Edge Bisection of nearly equilateral tetrahedra", Applied Mathematics and Computation, Vol. 472, 128631, 2024.
  • [60] Vyzoviti, S., “Folding Architecture: Spatial, Structural, and Organizational Diagrams”, BIS, 11, 131, 2004.
  • [61] Library and Archives Canada, “Postcard of the Canadian Government Pavilion at Expo '67 in Montreal” [Postcard], Library and Archives Canada, n.d.
  • [62] Clapham, C., Nicholson, J., "The Concise Oxford Dictionary of Mathematics", 4th ed., Oxford University Press, 2009.
  • [63] LMNTechStudio, "The Octahedron", Arch2o, n.d., https://www.arch2o.com/the-octahedron-lmntechstudio/. Accessed September 18, 2024.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimari Mühendislik, Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Feyza Nur Yildirim 0000-0002-9723-5740

Yayımlanma Tarihi 27 Ekim 2024
Gönderilme Tarihi 20 Eylül 2024
Kabul Tarihi 24 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 2

Kaynak Göster

APA Yildirim, F. N. (2024). Evaluation of Structurally Integrated Surface Articulation (SISA) Panels for Architectural Engineering Applications. Hendese Teknik Bilimler Ve Mühendislik Dergisi, 1(2), 102-114. https://doi.org/10.5281/zenodo.13996542