Spectrum Sensing Performance Analysis of Jarque-Bera Test Based Teaching-Learning Optimization Algorithm (JBTLBO) on Nakagami-m Fading Channel
Yıl 2025,
Cilt: 2 Sayı: 1, 5 - 12, 25.04.2025
Kenan Koçkaya
Öz
Cognitive radio is defined as a system that detects spectrum gaps that are not used by licensed users and adapts the radio operating parameters to broadcast in these bands. Since the frequency spectrum is a limited resource for wireless communication systems, effective use of frequency bands between licensed and unlicensed users is of great importance. Therefore, performing the spectrum sensing function smoothly is an important process for the success of cognitive radios. In this study, a new hybrid spectrum sensing algorithm using the teaching-learning based optimization (TLBO) algorithm based on the Jarque-Bera (JB) test is developed. The spectrum sensing model for the proposed algorithm is given and the sensing method is explained with theoretical analysis. Simulation studies are carried out on the Nakagami-m fading channel. The performance analysis of the proposed method is compared with the traditional energy-based sensing. The simulation results clearly show that the proposed method provides a noticeable improvement in spectrum sensing performance in the low SNR regime.
Proje Numarası
Proje kapsamında değildir.
Kaynakça
-
[1] Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group, Teknik Rapor, ABD, 2002.
-
[2] Tuna, E., Karagöz, M., “Gelecek nesil ağlar için spektrum tahsisinde yeni bir yaklaşım: Bilişsel radyo”, International Journal of Engineering Research and Development, Cilt 4, Sayı 1, Sayfa 25-31, 2012.
-
[3] Mitola, J., Maguire, G. Q., “Cognitive radio: Making software radios more personal”, IEEE Personal Communications Magazine, Cilt 6, Sayı 4, Sayfa 13-18, 1999.
-
[4] Mitola, J., “Cognitive radio: An integrated agent architecture for software defined radio”, Doktora Tezi, KTH Royal Institute of Technology, Stockholm, İsveç, 2000.
-
[5] Bektaş, C., Akan, A., “Enerji tabanlı spektrum algılamada dalgacık dönüşümü yaklaşımı”, XX. Sinyal İşleme ve Uygulamaları Kurultayı (SIU), Sayfa 1-4, Muğla, 18-20 Nisan 2012.
-
[6] Zeng, Y., Liang, Y. C., Hoang, A. T., Zhang, R., “A review on spectrum sensing for cognitive radio: Challenges and solutions”, EURASIP Journal on Advances in Signal Processing, Sayfa 1-15, 2010.
-
[7] Haykin, S., “Cognitive radio: Brain empowered wireless communications”, IEEE Journal on Selected Areas in Communications, Cilt 23, Sayı 2, Sayfa 201-220, 2005.
-
[8] Yücek, T., Arslan, H., “A survey of spectrum sensing algorithms for cognitive radio applications”, IEEE Communications Surveys & Tutorials, Cilt 11, Sayı 1, Sayfa 116-130, 2009.
-
[9] Tandra, R., Sahai, A., “SNR walls for signal detection”, IEEE Journal of Selected Topics in Signal Processing, Cilt 2, Sayı 1, Sayfa 4-17, 2008.
-
[10] Jaewoo, S., Srikant, R., “Improving channel utilization via cooperative spectrum sensing with opportunistic feedback in cognitive radio networks”, IEEE Communications Letters, Cilt 19, Sayı 6, Sayfa 1065-1068, 2015.
-
[11] Urkowitz, H., “Energy detection of unknown deterministic signals”, Proceedings of the IEEE, Cilt 55, Sayı 4, Sayfa 523-531, 1967.
-
[12] Wang, N., Gao, Y., Cuthbert, L., “Spectrum sensing using adaptive threshold based energy detection for OFDM signals”, 2014 IEEE International Conference on Communication Systems, Sayfa 359-363, Singapur, 2014.
-
[13] Kumar, A., Thakur, P., Pandit, S., Singh, G., “Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: An energy detection approach”, Wireless Networks, Cilt 25, Sayı 7, Sayfa 3917-3931, 2009.
-
[14] Wu, Q., Zhang, J., Feng, K., Li, K., “Differential energy-driven adaptive dual-threshold collaborative spectrum sensing algorithm”, 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Sayfa 1914-1917, Chongqing, 2024.
-
[15] Zhang, W., Mallik, R. K., Letaief, K. B., “Cooperative spectrum sensing optimization in cognitive radio networks”, 2008 IEEE International Conference on Communications (ICC), Sayfa 3411-3415, Beijing, 2008.
-
[16] Xie, J., Fang, J., Liu, C., Li, X., “Deep learning-based spectrum sensing in cognitive radio: A CNN-LSTM approach”, IEEE Communications Letters, Cilt 24, Sayı 10, Sayfa 2196-2200, 2020.
-
[17] Bagwari, A., Tomar, G. S., “Adaptive double-threshold based energy detector for spectrum sensing in cognitive radio networks”, International Journal of Electronics Letters, Cilt 1, Sayfa 24-32, 2013.
-
[18] Plata, D. M. M., Reátiga, Á. G. A., “Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold”, Procedia Engineering, Cilt 35, Sayfa 135-143, 2012.
-
[19] Ajadi, W. O., Sani, S. M., Tekanyi, A. M. S., “Estimation of an improved spectrum sensing threshold for cognitive radio using smoothed pseudo-Wigner-Ville distribution”, International Journal of Computer Applications, Cilt 168, Sayı 12, 2017.
-
[20]Pappu, K. V., Sanjay, K. S., Priyanka, J., “Performance evolution of ED-based spectrum sensing in CR over Nakagami-m/shadowed fading channel with MRC reception”, AEU - International Journal of Electronics and Communications, Cilt 83, Sayfa 512-518, 2018.
-
[21] Bogale, T. E., Vandendorpe, L., “Max-min SNR signal energy based spectrum sensing algorithms for cognitive radio networks with noise variance uncertainty”, IEEE Transactions on Wireless Communications, Cilt 13, Sayı 1, Sayfa 280-290, 2014.
-
[22] Mahendru, G., Shukla, A. K., Patnaik, L. M., “An optimal and adaptive double threshold-based approach to minimize error probability for spectrum sensing at low SNR regime”, Journal of Ambient Intelligence and Humanized Computing, Sayfa 1-10, 2022.
-
[23]Liu, S. Q., Hu, B. J., Wang, X. Y., “Hierarchical cooperative spectrum sensing based on double thresholds energy detection”, IEEE Communications Letters, Cilt 16, Sayı 7, Sayfa 1096-1099, 2012.
-
[24]Subekti, A., Rachmana, N. S., Suksmono, A. B., “A blind spectrum sensing for cognitive radio based on Jarque-Bera normality test”, International Journal on Electrical Engineering and Informatics, Cilt 8, Sayı 2, Sayfa 402-412, 2016.
-
[25]Keraliya, D., Ashalata, K., “Minimizing the detection error in cooperative spectrum sensing using teaching learning based optimization (TLBO)”, International Journal of Engineering Research & Technology (IJERT), Cilt 6, Sayı 2, Sayfa 495-500, 2017.
-
[26]Tallataf, R., Adnan, R., Ahmad, N. A., “Reliability factors based fuzzy logic scheme for spectrum sensing”, World Academy of Science, Engineering and Technology International Journal of Information and Communication Engineering, Cilt 12, Sayı 2, 2018.
-
[27] Ranjeet, M., Nallagonda, S., Anuradha, S., “Optimization analysis of improved energy detection based cooperative spectrum sensing network in Nakagami-m and Weibull fading channels”, Journal of Engineering Science and Technology Review, Cilt 10, Sayı 2, Sayfa 114-117, 2017.
-
[28]Xuping, Z., Jianguo, P., “Energy-detection based spectrum sensing for cognitive radio”, IET Conference on Wireless, Mobile and Sensor Networks, Sayfa 944-977, Şanghay, 12-14 Aralık 2007.
-
[29]Thadewald, T., Büning, H., “Jarque-Bera test and its competitors for testing normality: A power comparison”, Journal of Applied Statistics, Cilt 34, Sayı 1, Sayfa 87-105, 2007.
-
[30]Aslam, M., Sherwani, R. A. K., Saleem, M., “Vague data analysis using neutrosophic Jarque-Bera test”, PLOS ONE, Cilt 16, Sayı 12, e0260689, 2021.
-
[31] Xu, P., Deng, Y., Su, X., Mahadevan, S., “A new method to determine basic probability assignment from training data”, Knowledge-Based Systems, Cilt 46, Sayfa 69-80, 2013.
-
[32]Jarque, C. M., Bera, A. K., “A test for normality of observations and regression residuals”, International Statistical Review, Cilt 55, Sayı 2, Sayfa 163-172, 1987.
-
[33]Rao, R. V., Savsani, V. J., Vakharia, D. P., “Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, Cilt 43, Sayfa 303-315, 2011.
-
[34]Subekti, A., Rachmana, N. S., Suksmono, A. B., “A Jarque-Bera test based spectrum sensing for cognitive radio”, 2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA), Sayfa 1-4, IEEE, 2014.
-
[35]Koçkaya, K., “Improvement of spectrum perception performance in cognitive radio networks using energy sensing based collaborative online learning algorithm”, Doktora Tezi, Erciyes Üniversitesi, Kayseri, 2021.
-
[36]Yacoub, M. D., Bautista, J. V., De Rezende Guedes, L. G., “On higher order statistics of the Nakagami-m distribution”, IEEE Transactions on Vehicular Technology, Cilt 48, Sayı 3, Sayfa 790-794, 1999.
-
[37] Karagiannidis, G. K., Zogas, D. A., Kotsopoulos, S. A., “On the multivariate Nakagami-m distribution with exponential correlation”, IEEE Transactions on Communications, Cilt 51, Sayı 8, Sayfa 1240-1244, 2003.
-
[38]Duong, T. Q., Da Costa, D. B., Elkashlan, M., Bao, V. N. Q., “Cognitive amplify-and-forward relay networks over Nakagami-m fading”, IEEE Transactions on Vehicular Technology, Cilt 61, Sayı 5, Sayfa 2368-2374, 2012.
-
[39]Simon, M. K., Alouini, M. S., Digital communication over fading channels, John Wiley & Sons, 2004.
Jarque-Bera Testi Tabanlı Öğretme-Öğrenme Tabanlı Optimizasyon Algoritmasının (JBTLBO) Nakagami-m Sönümlemeli Kanal Üzerinde Spektrum Algılama Başarım Analizi
Yıl 2025,
Cilt: 2 Sayı: 1, 5 - 12, 25.04.2025
Kenan Koçkaya
Öz
Bilişsel radyo, lisans sahibi kullanıcılar tarafından kullanılmayan spektrum boşluklarını algılayan ve radyo çalışma parametrelerini bu bandlarda yayın yapabilecek şekilde uyarlayabilen sistem olarak tanımlanır. Kablosuz haberleşme sistemleri için frekans spektrumunun sınırlı bir kaynak olması nedeniyle, lisanslı ve lisanssız kullanıcılar arasında frekans bandlarının etkin bir şekilde kullanılması büyük önem taşımaktadır. Bu nedenle, bilişsel radyoların başarımı için spektrum algılama işlevinin sorunsuz olarak yerine getirilmesi önemli bir süreçtir. Bu çalışmada, Jarque-Bera (JB) testine dayalı öğretme-öğrenme tabanlı optimizasyon (TLBO) algoritmasının kullanıldığı yeni bir hibrit spektrum algılama algoritması geliştirilmiştir. Önerilen algortima için spektrum algılama modeli verilmiş ve algılama yöntemi teorik analizlerle açıklanmıştır. Simülasyon çalışmaları Nakagami-m sönümleme kanalı üzerinde yapılmıştır. Önerilen yöntemin performans analizi, geleneksel enerji tabanlı algılama ile karşılaştırılmıştır. Simülasyon sonuçları, önerilen yöntemin düşük SNR rejiminde spectrum algılama performansında gözle görülür bir iyileşme sağladığını açık bir şekilde göstermektedir.
Etik Beyan
Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.
Destekleyen Kurum
Bulunmamaktadır.
Proje Numarası
Proje kapsamında değildir.
Kaynakça
-
[1] Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group, Teknik Rapor, ABD, 2002.
-
[2] Tuna, E., Karagöz, M., “Gelecek nesil ağlar için spektrum tahsisinde yeni bir yaklaşım: Bilişsel radyo”, International Journal of Engineering Research and Development, Cilt 4, Sayı 1, Sayfa 25-31, 2012.
-
[3] Mitola, J., Maguire, G. Q., “Cognitive radio: Making software radios more personal”, IEEE Personal Communications Magazine, Cilt 6, Sayı 4, Sayfa 13-18, 1999.
-
[4] Mitola, J., “Cognitive radio: An integrated agent architecture for software defined radio”, Doktora Tezi, KTH Royal Institute of Technology, Stockholm, İsveç, 2000.
-
[5] Bektaş, C., Akan, A., “Enerji tabanlı spektrum algılamada dalgacık dönüşümü yaklaşımı”, XX. Sinyal İşleme ve Uygulamaları Kurultayı (SIU), Sayfa 1-4, Muğla, 18-20 Nisan 2012.
-
[6] Zeng, Y., Liang, Y. C., Hoang, A. T., Zhang, R., “A review on spectrum sensing for cognitive radio: Challenges and solutions”, EURASIP Journal on Advances in Signal Processing, Sayfa 1-15, 2010.
-
[7] Haykin, S., “Cognitive radio: Brain empowered wireless communications”, IEEE Journal on Selected Areas in Communications, Cilt 23, Sayı 2, Sayfa 201-220, 2005.
-
[8] Yücek, T., Arslan, H., “A survey of spectrum sensing algorithms for cognitive radio applications”, IEEE Communications Surveys & Tutorials, Cilt 11, Sayı 1, Sayfa 116-130, 2009.
-
[9] Tandra, R., Sahai, A., “SNR walls for signal detection”, IEEE Journal of Selected Topics in Signal Processing, Cilt 2, Sayı 1, Sayfa 4-17, 2008.
-
[10] Jaewoo, S., Srikant, R., “Improving channel utilization via cooperative spectrum sensing with opportunistic feedback in cognitive radio networks”, IEEE Communications Letters, Cilt 19, Sayı 6, Sayfa 1065-1068, 2015.
-
[11] Urkowitz, H., “Energy detection of unknown deterministic signals”, Proceedings of the IEEE, Cilt 55, Sayı 4, Sayfa 523-531, 1967.
-
[12] Wang, N., Gao, Y., Cuthbert, L., “Spectrum sensing using adaptive threshold based energy detection for OFDM signals”, 2014 IEEE International Conference on Communication Systems, Sayfa 359-363, Singapur, 2014.
-
[13] Kumar, A., Thakur, P., Pandit, S., Singh, G., “Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: An energy detection approach”, Wireless Networks, Cilt 25, Sayı 7, Sayfa 3917-3931, 2009.
-
[14] Wu, Q., Zhang, J., Feng, K., Li, K., “Differential energy-driven adaptive dual-threshold collaborative spectrum sensing algorithm”, 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Sayfa 1914-1917, Chongqing, 2024.
-
[15] Zhang, W., Mallik, R. K., Letaief, K. B., “Cooperative spectrum sensing optimization in cognitive radio networks”, 2008 IEEE International Conference on Communications (ICC), Sayfa 3411-3415, Beijing, 2008.
-
[16] Xie, J., Fang, J., Liu, C., Li, X., “Deep learning-based spectrum sensing in cognitive radio: A CNN-LSTM approach”, IEEE Communications Letters, Cilt 24, Sayı 10, Sayfa 2196-2200, 2020.
-
[17] Bagwari, A., Tomar, G. S., “Adaptive double-threshold based energy detector for spectrum sensing in cognitive radio networks”, International Journal of Electronics Letters, Cilt 1, Sayfa 24-32, 2013.
-
[18] Plata, D. M. M., Reátiga, Á. G. A., “Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold”, Procedia Engineering, Cilt 35, Sayfa 135-143, 2012.
-
[19] Ajadi, W. O., Sani, S. M., Tekanyi, A. M. S., “Estimation of an improved spectrum sensing threshold for cognitive radio using smoothed pseudo-Wigner-Ville distribution”, International Journal of Computer Applications, Cilt 168, Sayı 12, 2017.
-
[20]Pappu, K. V., Sanjay, K. S., Priyanka, J., “Performance evolution of ED-based spectrum sensing in CR over Nakagami-m/shadowed fading channel with MRC reception”, AEU - International Journal of Electronics and Communications, Cilt 83, Sayfa 512-518, 2018.
-
[21] Bogale, T. E., Vandendorpe, L., “Max-min SNR signal energy based spectrum sensing algorithms for cognitive radio networks with noise variance uncertainty”, IEEE Transactions on Wireless Communications, Cilt 13, Sayı 1, Sayfa 280-290, 2014.
-
[22] Mahendru, G., Shukla, A. K., Patnaik, L. M., “An optimal and adaptive double threshold-based approach to minimize error probability for spectrum sensing at low SNR regime”, Journal of Ambient Intelligence and Humanized Computing, Sayfa 1-10, 2022.
-
[23]Liu, S. Q., Hu, B. J., Wang, X. Y., “Hierarchical cooperative spectrum sensing based on double thresholds energy detection”, IEEE Communications Letters, Cilt 16, Sayı 7, Sayfa 1096-1099, 2012.
-
[24]Subekti, A., Rachmana, N. S., Suksmono, A. B., “A blind spectrum sensing for cognitive radio based on Jarque-Bera normality test”, International Journal on Electrical Engineering and Informatics, Cilt 8, Sayı 2, Sayfa 402-412, 2016.
-
[25]Keraliya, D., Ashalata, K., “Minimizing the detection error in cooperative spectrum sensing using teaching learning based optimization (TLBO)”, International Journal of Engineering Research & Technology (IJERT), Cilt 6, Sayı 2, Sayfa 495-500, 2017.
-
[26]Tallataf, R., Adnan, R., Ahmad, N. A., “Reliability factors based fuzzy logic scheme for spectrum sensing”, World Academy of Science, Engineering and Technology International Journal of Information and Communication Engineering, Cilt 12, Sayı 2, 2018.
-
[27] Ranjeet, M., Nallagonda, S., Anuradha, S., “Optimization analysis of improved energy detection based cooperative spectrum sensing network in Nakagami-m and Weibull fading channels”, Journal of Engineering Science and Technology Review, Cilt 10, Sayı 2, Sayfa 114-117, 2017.
-
[28]Xuping, Z., Jianguo, P., “Energy-detection based spectrum sensing for cognitive radio”, IET Conference on Wireless, Mobile and Sensor Networks, Sayfa 944-977, Şanghay, 12-14 Aralık 2007.
-
[29]Thadewald, T., Büning, H., “Jarque-Bera test and its competitors for testing normality: A power comparison”, Journal of Applied Statistics, Cilt 34, Sayı 1, Sayfa 87-105, 2007.
-
[30]Aslam, M., Sherwani, R. A. K., Saleem, M., “Vague data analysis using neutrosophic Jarque-Bera test”, PLOS ONE, Cilt 16, Sayı 12, e0260689, 2021.
-
[31] Xu, P., Deng, Y., Su, X., Mahadevan, S., “A new method to determine basic probability assignment from training data”, Knowledge-Based Systems, Cilt 46, Sayfa 69-80, 2013.
-
[32]Jarque, C. M., Bera, A. K., “A test for normality of observations and regression residuals”, International Statistical Review, Cilt 55, Sayı 2, Sayfa 163-172, 1987.
-
[33]Rao, R. V., Savsani, V. J., Vakharia, D. P., “Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, Cilt 43, Sayfa 303-315, 2011.
-
[34]Subekti, A., Rachmana, N. S., Suksmono, A. B., “A Jarque-Bera test based spectrum sensing for cognitive radio”, 2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA), Sayfa 1-4, IEEE, 2014.
-
[35]Koçkaya, K., “Improvement of spectrum perception performance in cognitive radio networks using energy sensing based collaborative online learning algorithm”, Doktora Tezi, Erciyes Üniversitesi, Kayseri, 2021.
-
[36]Yacoub, M. D., Bautista, J. V., De Rezende Guedes, L. G., “On higher order statistics of the Nakagami-m distribution”, IEEE Transactions on Vehicular Technology, Cilt 48, Sayı 3, Sayfa 790-794, 1999.
-
[37] Karagiannidis, G. K., Zogas, D. A., Kotsopoulos, S. A., “On the multivariate Nakagami-m distribution with exponential correlation”, IEEE Transactions on Communications, Cilt 51, Sayı 8, Sayfa 1240-1244, 2003.
-
[38]Duong, T. Q., Da Costa, D. B., Elkashlan, M., Bao, V. N. Q., “Cognitive amplify-and-forward relay networks over Nakagami-m fading”, IEEE Transactions on Vehicular Technology, Cilt 61, Sayı 5, Sayfa 2368-2374, 2012.
-
[39]Simon, M. K., Alouini, M. S., Digital communication over fading channels, John Wiley & Sons, 2004.