Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI AKIM YOĞUNLUKLARINDA ÜRETİLEN AKIMLI Nİ-B KAPLAMALARIN SERT CR KAPLAMAYA KARŞI ALTERNATİFLİĞİ

Yıl 2025, Cilt: 2 Sayı: 2, 54 - 61, 30.10.2025
https://doi.org/10.5281/zenodo.17474584

Öz

Akımlı ve akımsız nikel kaplamalar, sahip oldukları korozyon direnci ve fonksiyonel özellikleriyle birçok endüstriyel alanda yaygın olarak kullanılmaktadır. Bu bağlamda, nikel-bor (Ni-B) alaşım kaplamaları, sert krom (Cr) kaplamalara çevresel ve teknik açıdan alternatif olabilecek önemli bir potansiyel sunmaktadır. Bu çalışmada, elektrodepozisyon yöntemiyle farklı akım yoğunluklarında elde edilen Ni-B kaplamaların mikroyapı, yüzey morfolojisi, sertlik, aşınma davranışı ve kristal yapı özellikleri detaylı şekilde incelenmiştir. Karakterizasyon çalışmaları kapsamında SEM, mikroyüzey sertliği ve aşınma testleri uygulanmıştır. Elde edilen sonuçlar, Ni-B kaplamaların yüksek sertlik ve aşınma direnci sunduğunu, aynı zamanda sert krom kaplamalara çevre dostu bir alternatif olabileceğini göstermektedir.

Kaynakça

  • [1] European Chemicals Agency (ECHA), “ECHA to prepare restriction proposal on chromium (VI) substances,” News Release, Helsinki, 11 Oct. 2023. [Online]. Available: https://echa.europa.eu/-/echa-to-prepare-restriction-proposal-on-chromium-vi-substances
  • [2] European Commission, Questions & Answers: Towards a restriction of Cr(VI) substances under REACH, Brussels, 2 May 2025. [Online]. Available: https://single-market-economy.ec.europa.eu/document/download/
  • [3] European Chemicals Agency (ECHA), “Registry of restriction intentions until outcome — Restricting the use of certain chromium(VI) substances,” 2025. [Online]. Available: https://echa.europa.eu/registry-of-restriction-intentions
  • [4] ASTM International, ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, West Conshohocken, PA, USA: ASTM International, 2017.
  • [5] ASTM International, ASTM E384-22: Standard Test Method for Microindentation Hardness of Materials, West Conshohocken, PA, USA: ASTM International, 2022.
  • [6] Nickel Institute, Nickel Plating Handbook, 2nd ed., Toronto, Canada: Nickel Institute, 2023.
  • [7] A. Boukhouiete, S. Boumendjel, and N. E. Sobhi, “Effect of current density on the microstructure and morphology of the electrodeposited nickel coatings,” Turkish Journal of Chemistry, vol. 45, no. 5, pp. 1599–1608, 2021. doi: 10.3906/kim-2102-46.
  • [8] D. Cheng, L. Zhang, Y. Zhu, H. Xia, N. Li, W. Song, H. Bai, and H. Ma, “Preparation and properties of electrodeposited Ni–B–graphene oxide composite coatings,” Materials, vol. 15, no. 6, p. 2287, Mar. 2022. doi:10.3390/ma15062287.
  • [9] M. Köse et al., “Improving the tribological and corrosion behavior of Ni–B coatings as an alternative to hard chromium coatings,” Ceramics International, ahead of print, 2024.
  • [10] F. Doğan, M. Uysal, E. Duru, H. Akbulut, and S. Aslan, “Pulsed electrodeposition of Ni–B/TiN composites: effect of current density on the structure, mechanical, tribological, and corrosion properties,” Science and Technology of Advanced Materials, vol. 21, no. 1, pp. 1271–1284, Nov. 2020, doi: 10.1080/21870764.2020.1840704.
  • [11] A. R. Jones, “Microcracks in hard chromium electrodeposits,” Plating and Surface Finishing, vol. 76, no. 4, pp. 62–66, 1989.
  • [12] ASM International, ASM Handbook, Vol. 5: Surface Engineering. Materials Park, OH: ASM International, 2002.
  • [13] G. W. Stachowiak and A. W. Batchelor, Engineering Tribology, 4th ed. Oxford, U.K.: Elsevier, 2014.
  • [14] V. Vitry, M. Yunacti, A. Mégret, H. A. Khalid, M. H. Staia, and A. Montagne, “Selection of new heat treatment conditions for novel electroless nickel-boron deposits and characterization of heat-treated coatings,” Coatings, vol. 13, no. 1, p. 1, 2023, doi: 10.3390/coatings13010001.
  • [15] E. O. Hall, “The deformation and ageing of mild steel: III. Discussion of results,” Proceedings of the Physical Society. Section B, vol. 64, no. 9, pp. 747–753, 1951, doi: 10.1088/0370-1301/64/9/303.
  • [16] N. J. Petch, “The cleavage strength of polycrystals,” Journal of the Iron and Steel Institute, vol. 174, pp. 25–28, 1953.
  • [17] R. W. Armstrong, “60 years of Hall–Petch: Past to present nano-scale connections,” Materials Transactions, vol. 55, no. 1, pp. 2–12, 2014, doi:10.2320/matertrans.MA201302.
  • [18] Y. Yılmaz, H. Akbulut, and M. Uysal, “Effect of NaBH₄ concentration on hardness and microstructural properties of electroless deposited St-37 steel,” European Journal of Science and Technology (EJOSAT), no. 39, pp. 118–121, Jul. 2022, doi:10.31590/ejosat.1140395.
  • [19] M. F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, and C. D. Vurdu, “Effect of Fe–Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning,” Advances in Materials Science, vol. 21, no. 4, pp. 79–89, 2021, doi:10.2478/adms-2021-0026.
  • [20] Y. Yılmaz, “Ni–B akımsız kaplamalarda bor konsantrasyonunun optimizasyonu,” Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2019.
  • [21] Y. Yılmaz, Ş. Yılmaz, and A. Yılmaz, “Eco-friendly organic inhibitors for enhancing the corrosion resistance of Al-2024 alloy,” preprint, 2024, doi:10.21203/rs.3.rs-6402326/v1.

ELECTRODEPOSITED NI–B COATINGS PRODUCED AT DIFFERENT CURRENT DENSITIES: VIABILITY AS AN ALTERNATIVE TO HARD CHROMIUM

Yıl 2025, Cilt: 2 Sayı: 2, 54 - 61, 30.10.2025
https://doi.org/10.5281/zenodo.17474584

Öz

Electrolytic and electroless nickel coatings are widely used in various industrial applications due to their corrosion resistance and functional properties. In this context, nickel-boron (Ni-B) alloy coatings offer significant potential as an environmentally and technically viable alternative to hard chromium (Cr) coatings. In this study, the microstructure, surface morphology, hardness, wear behavior, and crystal structure of Ni-B coatings produced by electrodeposition at different current densities were investigated in detail. Characterization studies included SEM analysis, microhardness measurements, and wear tests. The results demonstrated that Ni-B coatings exhibit high hardness and wear resistance, indicating their potential as an environmentally friendly substitute for hard chromium coatings.

Kaynakça

  • [1] European Chemicals Agency (ECHA), “ECHA to prepare restriction proposal on chromium (VI) substances,” News Release, Helsinki, 11 Oct. 2023. [Online]. Available: https://echa.europa.eu/-/echa-to-prepare-restriction-proposal-on-chromium-vi-substances
  • [2] European Commission, Questions & Answers: Towards a restriction of Cr(VI) substances under REACH, Brussels, 2 May 2025. [Online]. Available: https://single-market-economy.ec.europa.eu/document/download/
  • [3] European Chemicals Agency (ECHA), “Registry of restriction intentions until outcome — Restricting the use of certain chromium(VI) substances,” 2025. [Online]. Available: https://echa.europa.eu/registry-of-restriction-intentions
  • [4] ASTM International, ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, West Conshohocken, PA, USA: ASTM International, 2017.
  • [5] ASTM International, ASTM E384-22: Standard Test Method for Microindentation Hardness of Materials, West Conshohocken, PA, USA: ASTM International, 2022.
  • [6] Nickel Institute, Nickel Plating Handbook, 2nd ed., Toronto, Canada: Nickel Institute, 2023.
  • [7] A. Boukhouiete, S. Boumendjel, and N. E. Sobhi, “Effect of current density on the microstructure and morphology of the electrodeposited nickel coatings,” Turkish Journal of Chemistry, vol. 45, no. 5, pp. 1599–1608, 2021. doi: 10.3906/kim-2102-46.
  • [8] D. Cheng, L. Zhang, Y. Zhu, H. Xia, N. Li, W. Song, H. Bai, and H. Ma, “Preparation and properties of electrodeposited Ni–B–graphene oxide composite coatings,” Materials, vol. 15, no. 6, p. 2287, Mar. 2022. doi:10.3390/ma15062287.
  • [9] M. Köse et al., “Improving the tribological and corrosion behavior of Ni–B coatings as an alternative to hard chromium coatings,” Ceramics International, ahead of print, 2024.
  • [10] F. Doğan, M. Uysal, E. Duru, H. Akbulut, and S. Aslan, “Pulsed electrodeposition of Ni–B/TiN composites: effect of current density on the structure, mechanical, tribological, and corrosion properties,” Science and Technology of Advanced Materials, vol. 21, no. 1, pp. 1271–1284, Nov. 2020, doi: 10.1080/21870764.2020.1840704.
  • [11] A. R. Jones, “Microcracks in hard chromium electrodeposits,” Plating and Surface Finishing, vol. 76, no. 4, pp. 62–66, 1989.
  • [12] ASM International, ASM Handbook, Vol. 5: Surface Engineering. Materials Park, OH: ASM International, 2002.
  • [13] G. W. Stachowiak and A. W. Batchelor, Engineering Tribology, 4th ed. Oxford, U.K.: Elsevier, 2014.
  • [14] V. Vitry, M. Yunacti, A. Mégret, H. A. Khalid, M. H. Staia, and A. Montagne, “Selection of new heat treatment conditions for novel electroless nickel-boron deposits and characterization of heat-treated coatings,” Coatings, vol. 13, no. 1, p. 1, 2023, doi: 10.3390/coatings13010001.
  • [15] E. O. Hall, “The deformation and ageing of mild steel: III. Discussion of results,” Proceedings of the Physical Society. Section B, vol. 64, no. 9, pp. 747–753, 1951, doi: 10.1088/0370-1301/64/9/303.
  • [16] N. J. Petch, “The cleavage strength of polycrystals,” Journal of the Iron and Steel Institute, vol. 174, pp. 25–28, 1953.
  • [17] R. W. Armstrong, “60 years of Hall–Petch: Past to present nano-scale connections,” Materials Transactions, vol. 55, no. 1, pp. 2–12, 2014, doi:10.2320/matertrans.MA201302.
  • [18] Y. Yılmaz, H. Akbulut, and M. Uysal, “Effect of NaBH₄ concentration on hardness and microstructural properties of electroless deposited St-37 steel,” European Journal of Science and Technology (EJOSAT), no. 39, pp. 118–121, Jul. 2022, doi:10.31590/ejosat.1140395.
  • [19] M. F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, and C. D. Vurdu, “Effect of Fe–Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning,” Advances in Materials Science, vol. 21, no. 4, pp. 79–89, 2021, doi:10.2478/adms-2021-0026.
  • [20] Y. Yılmaz, “Ni–B akımsız kaplamalarda bor konsantrasyonunun optimizasyonu,” Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2019.
  • [21] Y. Yılmaz, Ş. Yılmaz, and A. Yılmaz, “Eco-friendly organic inhibitors for enhancing the corrosion resistance of Al-2024 alloy,” preprint, 2024, doi:10.21203/rs.3.rs-6402326/v1.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Üretim Metalurjisi
Bölüm Araştırma Makalesi
Yazarlar

Yasin Uğur 0000-0003-0012-1091

Erhan Duru 0000-0002-6205-6566

Hatem Akbulut 0000-0002-6299-136X

Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 31 Temmuz 2025
Kabul Tarihi 20 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 2

Kaynak Göster

IEEE Y. Uğur, E. Duru, ve H. Akbulut, “FARKLI AKIM YOĞUNLUKLARINDA ÜRETİLEN AKIMLI Nİ-B KAPLAMALARIN SERT CR KAPLAMAYA KARŞI ALTERNATİFLİĞİ”, HENDESE, c. 2, sy. 2, ss. 54–61, 2025, doi: 10.5281/zenodo.17474584.