Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 181 - 188, 01.07.2024
https://doi.org/10.15671/hjbc.1435275

Öz

Kaynakça

  • T.A. Tran, and L.P. Popova, Functions and toxicity of cadmium in plants: recent advances and future prospects, Turk. J. Bot., 37(1) (2013) 1-13.
  • M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, N. Krishnamurthy, and N.K. Beeregowd, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7(2) (2014) 60-72.
  • L. Ozturk, S. Eker, F. Ozkutlu, and I. Cakmak, Effect of cadmium on growth and concentration of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars, Turk. J. Agricult. Forest., 27 (2003) 161–168.
  • X. Liu, and S. Zhang, Intraspecific differences in effects of cocontamination of cadmium and arsenate on early seedling growth and metal uptake by wheat, J. Environ.Sci., 19 (2007) 1221-1227.
  • Q. Cao, H. Hu, S. Khan, Z.J. Wang, A.J. Lin, X. Du, Y.G. Zhu, Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil, J. Hazard. Mater., 148 (2007) 377-382.
  • S.M. Gallego, L.B. Pena, R.A. Barcia, C.E. Azpilicueta, M.F. Iannone, E.P. Rosales, M.P. Benavides, Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms, Environ. Exp. Bot., 83 (2012) 33-46.
  • G. Deng, M. Li, H. Li, L. Yin, W. Li, Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides), Aquatic Botany., 112 (2014) 23-32.
  • M.R. Wilkins, J.C. Sanchez, A.A. Gooley, R.D. Appel, I. Humphery-Smith, D.F. Hochstrasser, K.L. Williams, Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it., Biotechnol. Genet. Eng. Rev., 13 (1996) 19–50.
  • N. Ahsan, J. Renaut, and S. Komatsu, Recent developments in the application of proteomics to the analysis of plant responses to heavy metals, Proteomics, 9 (2009) 2602–2621.
  • F. Yesilirmak, Z.N. Ozturk Gökçe, B. Metin, and Z. Sayers, Functional analysis of Triticum durum type 1 metallothionein gene (dMT) in response to varying levels of cadmium, Indian J. Plant Physiol., 23 (2018) 140-147.
  • D. Cao, H. Zhang, Y. Wang, and L. Zheng, Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola, Bull. Environ. Contam. Toxicol., 93 (2014) 171-176.
  • D. Beyersmann and S. Hechtenberg, Cadmium, gene regulation, and cellular sig.nalling in mammalian cells., Toxicol. Appl. Pharmacol., 144 (1997) 247–261.
  • F. Thévenod, J.M. Friedmann, A.D. Katsen, I.A. Hauser, Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis, J. Biol. Chem., 275 (2000) 1887–1896.
  • R.A. Gomes-Junior, C.A. Moldes F.S., Delite, G.B. Pompeu, P.L. Gratão, P. Mazzafera, P.J. Lea, R.A. Azevedo, Antioxidant metabolism of coffee cell suspension cultures in response to cadmium, Chemosphere, 65 (2006) 1330–1337.
  • S. Coakley, G. Cahill, A. M. Enright, B. O’Rourke, and C. Petti, Enzymatic response to cadmium by Impatiens glandulifera: A preliminary investigation, Biochem. Biophy. Rep., 26 (2021) 100936.
  • Y. Wang, Y. Qian, H. Hu, Y. Xu, H. Zhang, Comparative proteomic analysis of Cd-responsive proteins in wheat roots, Acta Physiol. Plant., 33 (2011) 349-357.
  • T.C. Durand, K. Sergeant, S. Planchon, S. Carpin, Acute metal stress in Populus tremula×P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium (2+), Proteomics, 10 (2010) 349–368.
  • J.E. Sarry, L. Kuhn, C. Ducruix, A. Lafaye, The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses, Proteomics, 6 (2006) 2180–2198.
  • C. Cosio, and C. Dunand, Specific functions of individual class III peroxidase genes, J. Exper. Botan., 60(2) (2009) 391-408.
  • F. Passardi, C. Cosio, C. Penel, and C. Dunand, Peroxidases have more functions than a Swiss army knife, Plant Cell Rep., 24 (2005) 255-265.
  • N. Tuteja, M.S. Banu, K.M. Huda, S.S. Gill, P. Jain, X.H. Pham and R. Tuteja, Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery, PLoS ONE 9:e98287, (2014).
  • A.M. Metz and K.S. Browning, Sequence of a cDNA encoding wheat eukaryotic protein synthesis initiation factor 4A, Gene, 131 (1993) 299–300.
  • N. K. Rana, P. Mohanpuria, and S. K. Yadav, Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress, Biol. Plantarum, 52 (2008) 361-364.

PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT

Yıl 2024, , 181 - 188, 01.07.2024
https://doi.org/10.15671/hjbc.1435275

Öz

Bu çalışma, proteomik bir yaklaşım kullanarak, kadmiyuma maruz kaldıktan sonra buğday köklerindeki protein bolluğundaki değişiklikleri değerlendirmeyi amaçlamaktadır. Buğday tohumları kontrollü çevre koşulları altında bir besin çözeltisinde yetiştirilmiş ve 30 µM Cd ile muamele edilmiştir. Toplam otuz protein lekesi, kontrol ve stres altındaki örnekler arasında tutarlı ve önemli bir değişiklik sergilemiştir. Tanımlanan farklı proteinler öncelikle stres (%41) ve metabolizma (%35) ile ilişkilendirilmiştir. Cd stresinin buğdaydaki protein seviyesi üzerindeki etkisini anlamak için, iki boyutlu poliakrilamid jel elektroforezi (2-DE) kullanılarak bir diferansiyel proteomik araştırması yapılmıştır. Uygulama ve kontrol gruplarından elli protein lekesi tanımlanmıştır. Bu elli proteinden yirmiyedisi Cd stresini takiben bollukta değişiklik göstermiş, onyedi protein yukarı regüle edilirken 10 protein aşağı regüle edilmiştir. Bu proteinlerin protein biyosentezi, karbon metabolizması, taşıma ve stres tepkisi dahil olmak üzere çeşitli süreçlerde yer aldığı bulunmuştur. Proteomik analizimizden elde edilen bulgular, Cd stresinin buğdaydaki stres tepkisini önemli ölçüde etkilediğini göstermektedir. Bu çalışma, bitkinin kadmiyum stresine verdiği yanıtın altında yatan moleküler mekanizmaların daha iyi anlaşılmasına katkıda bulunan yeni bilgiler sağlamaktadır.

Kaynakça

  • T.A. Tran, and L.P. Popova, Functions and toxicity of cadmium in plants: recent advances and future prospects, Turk. J. Bot., 37(1) (2013) 1-13.
  • M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, N. Krishnamurthy, and N.K. Beeregowd, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7(2) (2014) 60-72.
  • L. Ozturk, S. Eker, F. Ozkutlu, and I. Cakmak, Effect of cadmium on growth and concentration of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars, Turk. J. Agricult. Forest., 27 (2003) 161–168.
  • X. Liu, and S. Zhang, Intraspecific differences in effects of cocontamination of cadmium and arsenate on early seedling growth and metal uptake by wheat, J. Environ.Sci., 19 (2007) 1221-1227.
  • Q. Cao, H. Hu, S. Khan, Z.J. Wang, A.J. Lin, X. Du, Y.G. Zhu, Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil, J. Hazard. Mater., 148 (2007) 377-382.
  • S.M. Gallego, L.B. Pena, R.A. Barcia, C.E. Azpilicueta, M.F. Iannone, E.P. Rosales, M.P. Benavides, Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms, Environ. Exp. Bot., 83 (2012) 33-46.
  • G. Deng, M. Li, H. Li, L. Yin, W. Li, Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides), Aquatic Botany., 112 (2014) 23-32.
  • M.R. Wilkins, J.C. Sanchez, A.A. Gooley, R.D. Appel, I. Humphery-Smith, D.F. Hochstrasser, K.L. Williams, Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it., Biotechnol. Genet. Eng. Rev., 13 (1996) 19–50.
  • N. Ahsan, J. Renaut, and S. Komatsu, Recent developments in the application of proteomics to the analysis of plant responses to heavy metals, Proteomics, 9 (2009) 2602–2621.
  • F. Yesilirmak, Z.N. Ozturk Gökçe, B. Metin, and Z. Sayers, Functional analysis of Triticum durum type 1 metallothionein gene (dMT) in response to varying levels of cadmium, Indian J. Plant Physiol., 23 (2018) 140-147.
  • D. Cao, H. Zhang, Y. Wang, and L. Zheng, Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola, Bull. Environ. Contam. Toxicol., 93 (2014) 171-176.
  • D. Beyersmann and S. Hechtenberg, Cadmium, gene regulation, and cellular sig.nalling in mammalian cells., Toxicol. Appl. Pharmacol., 144 (1997) 247–261.
  • F. Thévenod, J.M. Friedmann, A.D. Katsen, I.A. Hauser, Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis, J. Biol. Chem., 275 (2000) 1887–1896.
  • R.A. Gomes-Junior, C.A. Moldes F.S., Delite, G.B. Pompeu, P.L. Gratão, P. Mazzafera, P.J. Lea, R.A. Azevedo, Antioxidant metabolism of coffee cell suspension cultures in response to cadmium, Chemosphere, 65 (2006) 1330–1337.
  • S. Coakley, G. Cahill, A. M. Enright, B. O’Rourke, and C. Petti, Enzymatic response to cadmium by Impatiens glandulifera: A preliminary investigation, Biochem. Biophy. Rep., 26 (2021) 100936.
  • Y. Wang, Y. Qian, H. Hu, Y. Xu, H. Zhang, Comparative proteomic analysis of Cd-responsive proteins in wheat roots, Acta Physiol. Plant., 33 (2011) 349-357.
  • T.C. Durand, K. Sergeant, S. Planchon, S. Carpin, Acute metal stress in Populus tremula×P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium (2+), Proteomics, 10 (2010) 349–368.
  • J.E. Sarry, L. Kuhn, C. Ducruix, A. Lafaye, The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses, Proteomics, 6 (2006) 2180–2198.
  • C. Cosio, and C. Dunand, Specific functions of individual class III peroxidase genes, J. Exper. Botan., 60(2) (2009) 391-408.
  • F. Passardi, C. Cosio, C. Penel, and C. Dunand, Peroxidases have more functions than a Swiss army knife, Plant Cell Rep., 24 (2005) 255-265.
  • N. Tuteja, M.S. Banu, K.M. Huda, S.S. Gill, P. Jain, X.H. Pham and R. Tuteja, Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery, PLoS ONE 9:e98287, (2014).
  • A.M. Metz and K.S. Browning, Sequence of a cDNA encoding wheat eukaryotic protein synthesis initiation factor 4A, Gene, 131 (1993) 299–300.
  • N. K. Rana, P. Mohanpuria, and S. K. Yadav, Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress, Biol. Plantarum, 52 (2008) 361-364.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Proteomik ve Moleküller Arası Etkileşimler
Bölüm Research Article
Yazarlar

Filiz Yeşilırmak 0000-0001-6115-0051

Yayımlanma Tarihi 1 Temmuz 2024
Gönderilme Tarihi 12 Şubat 2024
Kabul Tarihi 2 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yeşilırmak, F. (2024). PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT. Hacettepe Journal of Biology and Chemistry, 52(3), 181-188. https://doi.org/10.15671/hjbc.1435275
AMA Yeşilırmak F. PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT. HJBC. Temmuz 2024;52(3):181-188. doi:10.15671/hjbc.1435275
Chicago Yeşilırmak, Filiz. “PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT”. Hacettepe Journal of Biology and Chemistry 52, sy. 3 (Temmuz 2024): 181-88. https://doi.org/10.15671/hjbc.1435275.
EndNote Yeşilırmak F (01 Temmuz 2024) PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT. Hacettepe Journal of Biology and Chemistry 52 3 181–188.
IEEE F. Yeşilırmak, “PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT”, HJBC, c. 52, sy. 3, ss. 181–188, 2024, doi: 10.15671/hjbc.1435275.
ISNAD Yeşilırmak, Filiz. “PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT”. Hacettepe Journal of Biology and Chemistry 52/3 (Temmuz 2024), 181-188. https://doi.org/10.15671/hjbc.1435275.
JAMA Yeşilırmak F. PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT. HJBC. 2024;52:181–188.
MLA Yeşilırmak, Filiz. “PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT”. Hacettepe Journal of Biology and Chemistry, c. 52, sy. 3, 2024, ss. 181-8, doi:10.15671/hjbc.1435275.
Vancouver Yeşilırmak F. PROTEOMIC ANALYSIS OF CADMIUM RESPONSIVE PROTEINS IN WHEAT. HJBC. 2024;52(3):181-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc