Review
BibTex RIS Cite

Cutting-Edge Applications of Carbon nanotubes in Biosensors

Year 2026, Volume: 54 Issue: 1, 21 - 36, 31.12.2025
https://doi.org/10.15671/hjbc.1722886

Abstract

Carbon nanotubes (CNTs) have emerged as powerful nanomaterials for enhancing the performance of biosensors due to their exceptional electrical conductivity, high surface area, and compatibility with biological molecules. Their unique structure supports efficient electron transfer and robust immobilization of biomolecules, enabling high sensitivity and selectivity in detecting a wide range of analytes. This review reviews the integration of single-walled and multi-walled CNTs into various biosensing platforms, including electrochemical, optical, and field-effect transistor-based sensors. We highlight how functionalization strategies involving carboxyl, amine, and hydroxyl groups improve biocompatibility and target binding, and how CNT-based nanohybrids with metal nanoparticles enable multiplexed and dual-mode detection. The versatility of CNTs has also facilitated the development of flexible, wearable biosensors for real-time health monitoring. Despite challenges in large-scale synthesis and consistent functionalization, recent technological advances continue to drive innovation in this field. This review aims to provide an overview of the latest progress in CNT-based biosensors and their growing impact in clinical diagnostics, environmental monitoring, and food safety applications.

References

  • N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications, Colloids Surf. B Biointerfaces, 178 (2019) 385–394.
  • D.C. Ferrier, K.C. Honeychurch, Carbon Nanotube (CNT)-Based Biosensors, Biosensors, 11 (2021) 486.
  • D.R. Kauffman, A. Star, Carbon Nanotube Gas and Vapor Sensors, Angew. Chem. Int. Ed., 47 (2008) 6550–6570.
  • J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis, 17 (2005) 7–14.
  • A. Khan, E. DeVoe, S. Andreescu, Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare, Sens. Diagn., 2 (2023) 529–558.
  • S. Ranjbari, M. Bolourinezhad, P. Kesharwani, M. Rezayi, A. Sahebkar, Applications of carbon nanotube biosensors: Sensing the future, J. Drug Deliv. Sci. Technol., 97 (2024) 105747.
  • J.J. Guzmán-Mendoza, D. Chávez-Flores, S.L. Montes-Fonseca, C. González-Horta, E. Orrantia-Borunda, B. Sánchez-Ramírez, A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase, Nanomaterials, 12 (2022) 1465.
  • Y. Nagai, K. Nakamura, J. Ohno, M. Kawaguchi, T. Fujigaya, Antibody-Conjugated Gel-Coated Single-Walled Carbon Nanotubes as Photothermal Agents, ACS Appl. Bio Mater., 4 (2021) 5049–5056.
  • S. Yazdani, M. Mozaffarian, G. Pazuki, N. Hadidi, I. Gallego, G. Puras, et al., Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery, Sci. Rep., 12 (2022) 1–15.
  • H.R. Jamei, B. Rezaei, A.A. Ensafi, Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs-polyethylenimine nanocomposites for analysis of thrombin protein, Bioelectrochemistry, 138 (2021) 107701.
  • A. Das, A. Wazeer, Graphene and Carbon Nanotubes (CNTs)-Based Biosensor for Life Sciences Applications, Smart Innov. Syst. Technol., 322 (2023) 61–79.
  • K. Sakdaphetsiri, S. Teanphonkrang, A. Schulte, Cheap and Sustainable Biosensor Fabrication by Enzyme Immobilization in Commercial Polyacrylic Acid/Carbon Nanotube Films, ACS Omega, 7 (2022) 19347–19354.
  • R. Acharya, T.V. Patil, S.D. Dutta, J. Lee, K. Ganguly, H. Kim, et al., Single-Walled Carbon Nanotube-Based Optical Nano/Biosensors for Biomedical Applications: Role in Bioimaging, Disease Diagnosis, and Biomarkers Detection, Adv. Mater. Technol., 9 (2024) 2400279.
  • T. Li, Y. Liang, J. Li, Y. Yu, M.M. Xiao, W. Ni, et al., Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21, Anal. Chem., 93 (2021) 15501–15507.
  • X. Liang, N. Li, R. Zhang, P. Yin, C. Zhang, N. Yang, et al., Carbon-based SERS biosensor: from substrate design to sensing and bioapplication, NPG Asia Mater., 13 (2021) 1–36.
  • F. Huang, Z. Xie, Q. Zhang, S. Zada, R. Lin, Y. Deng, et al., Recent Advances in Fluorescence Resonance Energy Transfer (FRET) Biosensors for Exosomes, Curr. Issues Mol. Biol., 47 (2025) 235.
  • T.-T. Wang, X.-F. Huang, H. Huang, P. Luo, L.-S. Qing, Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review, Adv. Sens. Energy Mater., 1 (2022) 100016.
  • M.A. Zamzami, G. Rabbani, A. Ahmad, A.A. Basalah, W.H. Al-Sabban, S. Nate Ahn, et al., Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1, Bioelectrochemistry, 143 (2022) 107982.
  • L.M. Peng, Z. Zhang, S. Wang, Carbon nanotube electronics: recent advances, Mater. Today, 17 (2014) 433–442.
  • Y. Zheng, Y. Zhang, Z. Xue, H. Li, S. Shen, Wearable biosensor with high specific surface area PGA-CNTs electrode for sweat glucose detection, Microchem. J., 210 (2025) 112965.
  • A. Pokprasert, N. Rasitanon, I. Rahma Lani, I. Jeerapan, Tuning the Surface: Screen‑Printed Flexible Porous Nanocomposite Electrodes with Programmable Electrochemical Performances for Wearable Platforms, ACS Sens., 20 (2025) 31.
  • X. Wang, Z. Dong, W. Li, D.D. Xiao, G. Liu, Z. Yu, et al., A high‑sensitivity continuous glucose sensor using porous 3D cellulose/carbon nanotube network, Talanta, 283 (2025) 127201.
  • B.O. Murjani, P.S. Kadu, M. Bansod, S.S. Vaidya, M.D. Yadav, Carbon nanotubes in biomedical applications: current status, promises, and challenges, Carbon Lett., 32 (2022) 1207–1226.
  • Z. Shi, H. Zhao, F. Zhou, Y. Mao, Z. Gong, M. Lan, Sensitive Electrochemical Biosensor Using Gold and Manganese (IV) Oxide Nanomaterials on Multiwalled Carbon Nanotubes for the Determination of Homocysteine With a Portable Potentiostat, Anal. Lett., (2024).
  • Q. Cui, J. Li, Y. Li, L. Tang, K. Li, T. Li, et al., Sensitive and rapid detection of bacterial endotoxin with a functional carbon nanotube field‑effect transistor biosensor, Talanta, 266 (2024) 125035.
  • S. Ma, Q. Ren, L. Jiang, Z. Liu, Y. Zhu, J. Zhu, et al., A triple‑aptamer tetrahedral DNA nanostructures based carbon‑nanotube‑array transistor biosensor for rapid virus detection, Talanta, 266 (2024) 124973.
  • S. Malinowski, M. Wardak, C. Wardak, Effect of Modification of a Laccase‑Based Electrochemical Biosensor with Carbon Nanotubes on Signal Separation of Dihydroxybenzene Isomers, Langmuir, (2023).
  • X. Feng, P. Li, T. Li, X. Cao, D. Liu, M. Xiao, et al., Ultra‑sensitive and rapid detection of Salmonella enterica and Staphylococcus aureus to single‑cell level by aptamer‑functionalized carbon nanotube field‑effect transistor biosensors, Biosens. Bioelectron., 257 (2024) 116333.
  • Y. Liang, M. Xiao, J. Xie, J. Li, Y. Zhang, H. Liu, et al., Amplification‑Free Detection of SARS‑CoV‑2 Down to Single Virus Level by Portable Carbon Nanotube Biosensors, Small, 19 (2023) 2208198.
  • M. Yang, H. Wang, P. Liu, J. Cheng, A 3D electrochemical biosensor based on Super‑Aligned Carbon NanoTube array for point‑of‑care uric acid monitoring, Biosens. Bioelectron., 179 (2021) 113082.
  • H. Nasiri, K. Abbasian, M. Salahandish, S.N. Elyasi, Sensitive surface plasmon resonance biosensor by optimized carboxylate functionalized carbon nanotubes/chitosan for amlodipine detecting, Talanta, 276 (2024) 126249.
  • Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu, J. He, et al., Wafer‑Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label‑Free Detection of Disease Biomarkers, ACS Nano, 14 (2020) 8866–8874.
  • H. Chen, M. Xiao, J. He, Y. Zhang, Y. Liang, H. Liu, et al., Aptamer‑Functionalized Carbon Nanotube Field‑Effect Transistor Biosensors for Alzheimer’s Disease Serum Biomarker Detection, ACS Sens., 7 (2022) 2075–2083.
  • R. Ho, S. Fuller, H.S. Lee, M.M. Shulaker, Biosensor Chip for Point‑of‑Care Diagnostics: Carbon Nanotube Sensing Platform for Bacterial Detection and Identification, IEEE Trans. Nanotechnol., 23 (2024) 281–285.
  • M. Amin, B.M. Abdullah, S.R. Wylie, S.J. Rowley‑Neale, C.E. Banks, K.A. Whitehead, The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi‑Walled Carbon Nanotube Functionalised Electrochemical Biosensor, Nanomaterials, 13 (2022) 36.
  • E.S. Yulianti, S.F. Rahman, M. Rizkinia, A. Zakiyuddin, Low‑cost electrochemical biosensor based on a multi‑walled carbon nanotube‑doped molecularly imprinted polymer for uric acid detection, Arab. J. Chem., 17 (2024) 105692.
  • T.T. Tran, K. Clark, W. Ma, A. Mulchandani, Detection of a secreted protein biomarker for citrus Huanglongbing using a single‑walled carbon nanotubes‑based chemiresistive biosensor, Biosens. Bioelectron., 147 (2020) 111766.
  • I. Anshori, L.N. Nuraviana Rizalputri, R. Rona Althof, S.S. Surjadi, S. Harimurti, G. Gumilar, et al., Functionalized multi‑walled carbon nanotube/silver nanoparticle (f‑MWCNT/AgNP) nanocomposites as non‑enzymatic electrochemical biosensors for dopamine detection, Nanocomposites, 7 (2021) 97–108.
  • V. Shumeiko, E. Malach, Y. Helman, G. Paltiel, G. Hayouka, et al., A nanoscale optical biosensor based on peptide encapsulated SWCNTs for detection of acetic acid in the gaseous phase, Sens. Actuators B Chem., 327 (2021) 128832.
  • W. Shi, J. Li, J. Wu, Q. Wei, C. Chen, N. Bao, et al., An electrochemical biosensor based on multi‑wall carbon nanotube–modified screen‑printed electrode immobilized by uricase for the detection of salivary uric acid, Anal. Bioanal. Chem., 412 (2020) 7275–7283.
  • R.E.A. Gwyther, S. Côté, C.S. Lee, H. Miao, K. Ramakrishnan, M. Palma, et al., Optimising CNT‑FET biosensor design through modelling of biomolecular electrostatic gating and its application to β‑lactamase detection, Nat. Commun., 15 (2024) 1–10.
  • Y. Jang, J. Won, Y. Lee, S.H. Park, J. Oh, Optimization of CNT growth‑upheaved nanofilm for highly sensitive fluorescent detection of Alzheimer’s disease, Sens. Actuators B Chem., 415 (2024) 135991.
  • A.I. Vorobjova, D.I. Tishkevich, E.A. Outkina, Y. Yao, I.U. Razanau, T.I. Zubar, et al., Fabrication of composite nanostructures for impedance biosensors using anodic aluminum oxide templates and carbon nanotubes, Ceram. Int., 50 (2024) 45703–45712.
  • A. Uniyal, K. Kumba, G. Dhiman, M.Z. Ahmed, A. Pal, D. Pal, et al., Advanced SPR Sensor for Human Sperm Analysis: Leveraging Silver and Nanomaterials for Enhanced Performance, Plasmonics, (2024) 1–12.
  • A. Pathak, S. Parveen, B.D. Gupta, Fibre Optic SPR Sensor Using Functionalized CNTs for the Detection of SMX: Comparison with Enzymatic Approach, Plasmonics, 13 (2018) 189–202.
  • P. Nagarajan, S. Manoharadas, V. Dhasarathan, S. Rajeshkannan, Cancer Detection Using Multi‑layered Kretschmann Configuration–based Refractive Index Sensor, Plasmonics, (2024) 1–12.
  • C.K. Song, E. Oh, M.S. Kang, B.S. Shin, S.Y. Han, M. Jung, et al., Fluorescence‑based immunosensor using three‑dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker, Anal. Chim. Acta, 1027 (2018) 101–108.
  • C. Zhang, R. Lang, X. Wen, An electrochemical biosensor based on β‑cyclodextrin modified electrode to determine Paclitaxel as an important agent in treatment of breast cancer, Alexandria Eng. J., 91 (2024) 550–557.
  • J. Chen, R. Hou, S. Li, C. Sun, K. Peng, Y. Dai, et al., PAM/CNTs‑Au microcrack sensor with high sensitivity and wide detection range for multi‑scale human motion detection, Sens. Actuators A Phys., 370 (2024) 115203.
  • M. Geetha, G.G. Nair, K.K. Sadasivuni, S. Al‑maadeed, A.G.A. Muthalif, Electrochemical Nonenzymatic Acetone Sensing: A Novel Approach of Biosensor Platform Based on CNT/CuO Nanosystems, Macromol. Symp., 412 (2023) 2200150.
  • H. Singh, J. Wu, K.A.L. Lagemann, M. Nath, Highly Efficient Dopamine Sensing with a Carbon Nanotube‑Encapsulated Metal Chalcogenide Nanostructure, ACS Appl. Nano Mater., 7 (2024) 4814–4823.
  • S. Liu, X.D. Zhang, X. Gu, D. Ming, Photodetectors based on two dimensional materials for biomedical application. Biosens. Bioelectron., 143 (2019), 111617.
  • B. Ren, J. Miao, S. Wang, Y. Xu, Z. Zhai, X. Dong, Z. Liu, Nitrogen-rich melamine-based carbon nanosheets prepared via polyvinyl pyrrolidone/ammonia chloride-mediate strategy as an excellent adsorbent for methylene blue adsorption. Adv. Powder Technol., 32 (2021), 1774-1784.
  • T. Akkaş, M. Reshadsedghi, M. Şen, V. Kılıç, N. Horzum,(2025). The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mat., (2025), 2504796.
  • J. Sengupta, C.M. Hussain, Carbon Nanotube-Based Field-Effect Transistor Biosensors for Biomedical Applications: Decadal Developments and Advancements (2016–2025). Biosens., 15, (2025), 296.
  • L. Dong, C. Zhao, C. Han, Y. Yang, F. Yang, Advancement of AI-assisted self-powered healthcare sensing systems. Med. Mat., 2, (2025), 55-77.

Biyosensörlerde Karbon Nanotüplerin Son Teknoloji Uygulamaları

Year 2026, Volume: 54 Issue: 1, 21 - 36, 31.12.2025
https://doi.org/10.15671/hjbc.1722886

Abstract

Carbon nanotubes (CNTs) have emerged as powerful nanomaterials for enhancing the performance of biosensors due to their exceptional electrical conductivity, high surface area, and compatibility with biological molecules. Their unique structure supports efficient electron transfer and robust immobilization of biomolecules, enabling high sensitivity and selectivity in detecting a wide range of analytes. This review reviews the integration of single-walled and multi-walled CNTs into various biosensing platforms, including electrochemical, optical, and field-effect transistor-based sensors. We highlight how functionalization strategies involving carboxyl, amine, and hydroxyl groups improve biocompatibility and target binding, and how CNT-based nanohybrids with metal nanoparticles enable multiplexed and dual-mode detection. The versatility of CNTs has also facilitated the development of flexible, wearable biosensors for real-time health monitoring. Despite challenges in large-scale synthesis and consistent functionalization, recent technological advances continue to drive innovation in this field. This review aims to provide an overview of the latest progress in CNT-based biosensors and their growing impact in clinical diagnostics, environmental monitoring, and food safety applications.

References

  • N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications, Colloids Surf. B Biointerfaces, 178 (2019) 385–394.
  • D.C. Ferrier, K.C. Honeychurch, Carbon Nanotube (CNT)-Based Biosensors, Biosensors, 11 (2021) 486.
  • D.R. Kauffman, A. Star, Carbon Nanotube Gas and Vapor Sensors, Angew. Chem. Int. Ed., 47 (2008) 6550–6570.
  • J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis, 17 (2005) 7–14.
  • A. Khan, E. DeVoe, S. Andreescu, Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare, Sens. Diagn., 2 (2023) 529–558.
  • S. Ranjbari, M. Bolourinezhad, P. Kesharwani, M. Rezayi, A. Sahebkar, Applications of carbon nanotube biosensors: Sensing the future, J. Drug Deliv. Sci. Technol., 97 (2024) 105747.
  • J.J. Guzmán-Mendoza, D. Chávez-Flores, S.L. Montes-Fonseca, C. González-Horta, E. Orrantia-Borunda, B. Sánchez-Ramírez, A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase, Nanomaterials, 12 (2022) 1465.
  • Y. Nagai, K. Nakamura, J. Ohno, M. Kawaguchi, T. Fujigaya, Antibody-Conjugated Gel-Coated Single-Walled Carbon Nanotubes as Photothermal Agents, ACS Appl. Bio Mater., 4 (2021) 5049–5056.
  • S. Yazdani, M. Mozaffarian, G. Pazuki, N. Hadidi, I. Gallego, G. Puras, et al., Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery, Sci. Rep., 12 (2022) 1–15.
  • H.R. Jamei, B. Rezaei, A.A. Ensafi, Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs-polyethylenimine nanocomposites for analysis of thrombin protein, Bioelectrochemistry, 138 (2021) 107701.
  • A. Das, A. Wazeer, Graphene and Carbon Nanotubes (CNTs)-Based Biosensor for Life Sciences Applications, Smart Innov. Syst. Technol., 322 (2023) 61–79.
  • K. Sakdaphetsiri, S. Teanphonkrang, A. Schulte, Cheap and Sustainable Biosensor Fabrication by Enzyme Immobilization in Commercial Polyacrylic Acid/Carbon Nanotube Films, ACS Omega, 7 (2022) 19347–19354.
  • R. Acharya, T.V. Patil, S.D. Dutta, J. Lee, K. Ganguly, H. Kim, et al., Single-Walled Carbon Nanotube-Based Optical Nano/Biosensors for Biomedical Applications: Role in Bioimaging, Disease Diagnosis, and Biomarkers Detection, Adv. Mater. Technol., 9 (2024) 2400279.
  • T. Li, Y. Liang, J. Li, Y. Yu, M.M. Xiao, W. Ni, et al., Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21, Anal. Chem., 93 (2021) 15501–15507.
  • X. Liang, N. Li, R. Zhang, P. Yin, C. Zhang, N. Yang, et al., Carbon-based SERS biosensor: from substrate design to sensing and bioapplication, NPG Asia Mater., 13 (2021) 1–36.
  • F. Huang, Z. Xie, Q. Zhang, S. Zada, R. Lin, Y. Deng, et al., Recent Advances in Fluorescence Resonance Energy Transfer (FRET) Biosensors for Exosomes, Curr. Issues Mol. Biol., 47 (2025) 235.
  • T.-T. Wang, X.-F. Huang, H. Huang, P. Luo, L.-S. Qing, Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review, Adv. Sens. Energy Mater., 1 (2022) 100016.
  • M.A. Zamzami, G. Rabbani, A. Ahmad, A.A. Basalah, W.H. Al-Sabban, S. Nate Ahn, et al., Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1, Bioelectrochemistry, 143 (2022) 107982.
  • L.M. Peng, Z. Zhang, S. Wang, Carbon nanotube electronics: recent advances, Mater. Today, 17 (2014) 433–442.
  • Y. Zheng, Y. Zhang, Z. Xue, H. Li, S. Shen, Wearable biosensor with high specific surface area PGA-CNTs electrode for sweat glucose detection, Microchem. J., 210 (2025) 112965.
  • A. Pokprasert, N. Rasitanon, I. Rahma Lani, I. Jeerapan, Tuning the Surface: Screen‑Printed Flexible Porous Nanocomposite Electrodes with Programmable Electrochemical Performances for Wearable Platforms, ACS Sens., 20 (2025) 31.
  • X. Wang, Z. Dong, W. Li, D.D. Xiao, G. Liu, Z. Yu, et al., A high‑sensitivity continuous glucose sensor using porous 3D cellulose/carbon nanotube network, Talanta, 283 (2025) 127201.
  • B.O. Murjani, P.S. Kadu, M. Bansod, S.S. Vaidya, M.D. Yadav, Carbon nanotubes in biomedical applications: current status, promises, and challenges, Carbon Lett., 32 (2022) 1207–1226.
  • Z. Shi, H. Zhao, F. Zhou, Y. Mao, Z. Gong, M. Lan, Sensitive Electrochemical Biosensor Using Gold and Manganese (IV) Oxide Nanomaterials on Multiwalled Carbon Nanotubes for the Determination of Homocysteine With a Portable Potentiostat, Anal. Lett., (2024).
  • Q. Cui, J. Li, Y. Li, L. Tang, K. Li, T. Li, et al., Sensitive and rapid detection of bacterial endotoxin with a functional carbon nanotube field‑effect transistor biosensor, Talanta, 266 (2024) 125035.
  • S. Ma, Q. Ren, L. Jiang, Z. Liu, Y. Zhu, J. Zhu, et al., A triple‑aptamer tetrahedral DNA nanostructures based carbon‑nanotube‑array transistor biosensor for rapid virus detection, Talanta, 266 (2024) 124973.
  • S. Malinowski, M. Wardak, C. Wardak, Effect of Modification of a Laccase‑Based Electrochemical Biosensor with Carbon Nanotubes on Signal Separation of Dihydroxybenzene Isomers, Langmuir, (2023).
  • X. Feng, P. Li, T. Li, X. Cao, D. Liu, M. Xiao, et al., Ultra‑sensitive and rapid detection of Salmonella enterica and Staphylococcus aureus to single‑cell level by aptamer‑functionalized carbon nanotube field‑effect transistor biosensors, Biosens. Bioelectron., 257 (2024) 116333.
  • Y. Liang, M. Xiao, J. Xie, J. Li, Y. Zhang, H. Liu, et al., Amplification‑Free Detection of SARS‑CoV‑2 Down to Single Virus Level by Portable Carbon Nanotube Biosensors, Small, 19 (2023) 2208198.
  • M. Yang, H. Wang, P. Liu, J. Cheng, A 3D electrochemical biosensor based on Super‑Aligned Carbon NanoTube array for point‑of‑care uric acid monitoring, Biosens. Bioelectron., 179 (2021) 113082.
  • H. Nasiri, K. Abbasian, M. Salahandish, S.N. Elyasi, Sensitive surface plasmon resonance biosensor by optimized carboxylate functionalized carbon nanotubes/chitosan for amlodipine detecting, Talanta, 276 (2024) 126249.
  • Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu, J. He, et al., Wafer‑Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label‑Free Detection of Disease Biomarkers, ACS Nano, 14 (2020) 8866–8874.
  • H. Chen, M. Xiao, J. He, Y. Zhang, Y. Liang, H. Liu, et al., Aptamer‑Functionalized Carbon Nanotube Field‑Effect Transistor Biosensors for Alzheimer’s Disease Serum Biomarker Detection, ACS Sens., 7 (2022) 2075–2083.
  • R. Ho, S. Fuller, H.S. Lee, M.M. Shulaker, Biosensor Chip for Point‑of‑Care Diagnostics: Carbon Nanotube Sensing Platform for Bacterial Detection and Identification, IEEE Trans. Nanotechnol., 23 (2024) 281–285.
  • M. Amin, B.M. Abdullah, S.R. Wylie, S.J. Rowley‑Neale, C.E. Banks, K.A. Whitehead, The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi‑Walled Carbon Nanotube Functionalised Electrochemical Biosensor, Nanomaterials, 13 (2022) 36.
  • E.S. Yulianti, S.F. Rahman, M. Rizkinia, A. Zakiyuddin, Low‑cost electrochemical biosensor based on a multi‑walled carbon nanotube‑doped molecularly imprinted polymer for uric acid detection, Arab. J. Chem., 17 (2024) 105692.
  • T.T. Tran, K. Clark, W. Ma, A. Mulchandani, Detection of a secreted protein biomarker for citrus Huanglongbing using a single‑walled carbon nanotubes‑based chemiresistive biosensor, Biosens. Bioelectron., 147 (2020) 111766.
  • I. Anshori, L.N. Nuraviana Rizalputri, R. Rona Althof, S.S. Surjadi, S. Harimurti, G. Gumilar, et al., Functionalized multi‑walled carbon nanotube/silver nanoparticle (f‑MWCNT/AgNP) nanocomposites as non‑enzymatic electrochemical biosensors for dopamine detection, Nanocomposites, 7 (2021) 97–108.
  • V. Shumeiko, E. Malach, Y. Helman, G. Paltiel, G. Hayouka, et al., A nanoscale optical biosensor based on peptide encapsulated SWCNTs for detection of acetic acid in the gaseous phase, Sens. Actuators B Chem., 327 (2021) 128832.
  • W. Shi, J. Li, J. Wu, Q. Wei, C. Chen, N. Bao, et al., An electrochemical biosensor based on multi‑wall carbon nanotube–modified screen‑printed electrode immobilized by uricase for the detection of salivary uric acid, Anal. Bioanal. Chem., 412 (2020) 7275–7283.
  • R.E.A. Gwyther, S. Côté, C.S. Lee, H. Miao, K. Ramakrishnan, M. Palma, et al., Optimising CNT‑FET biosensor design through modelling of biomolecular electrostatic gating and its application to β‑lactamase detection, Nat. Commun., 15 (2024) 1–10.
  • Y. Jang, J. Won, Y. Lee, S.H. Park, J. Oh, Optimization of CNT growth‑upheaved nanofilm for highly sensitive fluorescent detection of Alzheimer’s disease, Sens. Actuators B Chem., 415 (2024) 135991.
  • A.I. Vorobjova, D.I. Tishkevich, E.A. Outkina, Y. Yao, I.U. Razanau, T.I. Zubar, et al., Fabrication of composite nanostructures for impedance biosensors using anodic aluminum oxide templates and carbon nanotubes, Ceram. Int., 50 (2024) 45703–45712.
  • A. Uniyal, K. Kumba, G. Dhiman, M.Z. Ahmed, A. Pal, D. Pal, et al., Advanced SPR Sensor for Human Sperm Analysis: Leveraging Silver and Nanomaterials for Enhanced Performance, Plasmonics, (2024) 1–12.
  • A. Pathak, S. Parveen, B.D. Gupta, Fibre Optic SPR Sensor Using Functionalized CNTs for the Detection of SMX: Comparison with Enzymatic Approach, Plasmonics, 13 (2018) 189–202.
  • P. Nagarajan, S. Manoharadas, V. Dhasarathan, S. Rajeshkannan, Cancer Detection Using Multi‑layered Kretschmann Configuration–based Refractive Index Sensor, Plasmonics, (2024) 1–12.
  • C.K. Song, E. Oh, M.S. Kang, B.S. Shin, S.Y. Han, M. Jung, et al., Fluorescence‑based immunosensor using three‑dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker, Anal. Chim. Acta, 1027 (2018) 101–108.
  • C. Zhang, R. Lang, X. Wen, An electrochemical biosensor based on β‑cyclodextrin modified electrode to determine Paclitaxel as an important agent in treatment of breast cancer, Alexandria Eng. J., 91 (2024) 550–557.
  • J. Chen, R. Hou, S. Li, C. Sun, K. Peng, Y. Dai, et al., PAM/CNTs‑Au microcrack sensor with high sensitivity and wide detection range for multi‑scale human motion detection, Sens. Actuators A Phys., 370 (2024) 115203.
  • M. Geetha, G.G. Nair, K.K. Sadasivuni, S. Al‑maadeed, A.G.A. Muthalif, Electrochemical Nonenzymatic Acetone Sensing: A Novel Approach of Biosensor Platform Based on CNT/CuO Nanosystems, Macromol. Symp., 412 (2023) 2200150.
  • H. Singh, J. Wu, K.A.L. Lagemann, M. Nath, Highly Efficient Dopamine Sensing with a Carbon Nanotube‑Encapsulated Metal Chalcogenide Nanostructure, ACS Appl. Nano Mater., 7 (2024) 4814–4823.
  • S. Liu, X.D. Zhang, X. Gu, D. Ming, Photodetectors based on two dimensional materials for biomedical application. Biosens. Bioelectron., 143 (2019), 111617.
  • B. Ren, J. Miao, S. Wang, Y. Xu, Z. Zhai, X. Dong, Z. Liu, Nitrogen-rich melamine-based carbon nanosheets prepared via polyvinyl pyrrolidone/ammonia chloride-mediate strategy as an excellent adsorbent for methylene blue adsorption. Adv. Powder Technol., 32 (2021), 1774-1784.
  • T. Akkaş, M. Reshadsedghi, M. Şen, V. Kılıç, N. Horzum,(2025). The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mat., (2025), 2504796.
  • J. Sengupta, C.M. Hussain, Carbon Nanotube-Based Field-Effect Transistor Biosensors for Biomedical Applications: Decadal Developments and Advancements (2016–2025). Biosens., 15, (2025), 296.
  • L. Dong, C. Zhao, C. Han, Y. Yang, F. Yang, Advancement of AI-assisted self-powered healthcare sensing systems. Med. Mat., 2, (2025), 55-77.
There are 56 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry, Sensor Technology
Journal Section Review
Authors

Ehsan Sanattalab 0000-0001-7226-6965

Dilek Kanarya 0000-0001-8984-0142

Aliakbar Ebrahımı 0000-0001-6437-7796

Reza Didarian 0000-0001-9329-878X

Fatma Doğan Guzel 0000-0001-7200-4615

Nimet Yıldırım Tirgil 0000-0002-5973-8830

Submission Date June 19, 2025
Acceptance Date September 16, 2025
Publication Date December 31, 2025
Published in Issue Year 2026 Volume: 54 Issue: 1

Cite

APA Sanattalab, E., Kanarya, D., Ebrahımı, A., … Didarian, R. (2025). Cutting-Edge Applications of Carbon nanotubes in Biosensors. Hacettepe Journal of Biology and Chemistry, 54(1), 21-36. https://doi.org/10.15671/hjbc.1722886
AMA Sanattalab E, Kanarya D, Ebrahımı A, Didarian R, Doğan Guzel F, Yıldırım Tirgil N. Cutting-Edge Applications of Carbon nanotubes in Biosensors. HJBC. December 2025;54(1):21-36. doi:10.15671/hjbc.1722886
Chicago Sanattalab, Ehsan, Dilek Kanarya, Aliakbar Ebrahımı, Reza Didarian, Fatma Doğan Guzel, and Nimet Yıldırım Tirgil. “Cutting-Edge Applications of Carbon Nanotubes in Biosensors”. Hacettepe Journal of Biology and Chemistry 54, no. 1 (December 2025): 21-36. https://doi.org/10.15671/hjbc.1722886.
EndNote Sanattalab E, Kanarya D, Ebrahımı A, Didarian R, Doğan Guzel F, Yıldırım Tirgil N (December 1, 2025) Cutting-Edge Applications of Carbon nanotubes in Biosensors. Hacettepe Journal of Biology and Chemistry 54 1 21–36.
IEEE E. Sanattalab, D. Kanarya, A. Ebrahımı, R. Didarian, F. Doğan Guzel, and N. Yıldırım Tirgil, “Cutting-Edge Applications of Carbon nanotubes in Biosensors”, HJBC, vol. 54, no. 1, pp. 21–36, 2025, doi: 10.15671/hjbc.1722886.
ISNAD Sanattalab, Ehsan et al. “Cutting-Edge Applications of Carbon Nanotubes in Biosensors”. Hacettepe Journal of Biology and Chemistry 54/1 (December2025), 21-36. https://doi.org/10.15671/hjbc.1722886.
JAMA Sanattalab E, Kanarya D, Ebrahımı A, Didarian R, Doğan Guzel F, Yıldırım Tirgil N. Cutting-Edge Applications of Carbon nanotubes in Biosensors. HJBC. 2025;54:21–36.
MLA Sanattalab, Ehsan et al. “Cutting-Edge Applications of Carbon Nanotubes in Biosensors”. Hacettepe Journal of Biology and Chemistry, vol. 54, no. 1, 2025, pp. 21-36, doi:10.15671/hjbc.1722886.
Vancouver Sanattalab E, Kanarya D, Ebrahımı A, Didarian R, Doğan Guzel F, Yıldırım Tirgil N. Cutting-Edge Applications of Carbon nanotubes in Biosensors. HJBC. 2025;54(1):21-36.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc