Research Article
BibTex RIS Cite

Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic

Year 2018, Volume: 46 Issue: 2, 159 - 167, 03.06.2018

Abstract

I
n this work, platinum (Pt), titanium (Ti) and silver (Ag) doped graphene oxide (GO) nanostructures were
synthesized by using sonochemical technique, a relatively new technique in nanomaterial synthesis, and
characterized in detail. The synthesized nanomaterials were characterized utilizing transmission electron
microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TEM images and XPS spectras showed that
the dopping process was successful. In addition, a multilayer graphene oxide-silver nanoparticles (M-GOAgNPs)
nano-structure was synthesized in this study for the first time, and it’s electrochemical performance
was compared with GO-AgNPs. As a result of electrochemical study, the rate constants of the GO-AgNPs and
M-GO-AgNPs modified electrodes were found as ksanodic= 6.62 s-1 and ksanodic= 6.78 s-1, respectively. Finally, the
M-GO-AgNPs nano-structure obtained by sonochemical technique, a green chemistry synthesis technique, has
been found to be suitable for use as an electrochemical sensor matrix.

References

  • J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron., 74 (2015) 71-77.
  • Z. Liu, Y. Guo, C. Dong, A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite, Talanta, 137 (2015) 87-93.
  • G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, and P.J. Kelly, Doping Graphene With Metal Contacts, Phys. Rev. Let., 101 (2008) 268031-268034.
  • B. Uchoa, C.Y. Lin, and A.H. Castro Neto, Tailoring graphene with metals on top, Phys. Rev. B, 77 (2008) 035421-035425.
  • G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction, J. Am. Chem. Soc., 131, 2009, 8262- 8270.
  • Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 11 (2009) 846–849.
  • T. Maiyalagan, X. Dong, P. Chen, X. Wang, Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application, J. Mater. Chem., 22 (2012) 5286-5290.
  • K.S. Suslick, Ultrasound: Its chemical, physical and biological effects, VCH Verlagsgesellschaft, Weinheim, Germany, 1988.
  • B. Neppolian, C. Wang, Muthupandian Ashokkumar. Sonochemically synthesized mono and bimetallic Au– Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity, Ultrason. Sonochem., 21 (2014) 1948-1953.
  • B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Graphene oxide based Pt–TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency, Ultrason. Sonochem., 19 (2012) 9-15.
  • S. Zhu, J. Guo, J. Dong, Zn Cui, T. Lu, C. Zhu, D. Zhang, J. Ma, Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors, Ultrason. Sonochem., 20 (2013) 872-880.
  • L. Zhu, J.D. Chung, W.C. Oh, Rapid sonochemical synthesis of novel PbSe–graphene–TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS, Ultrason. Sonochem., 27 (2015) 252-261.
  • M. Giovanni, H.L. Poh, A. Ambrosi, G. Zhao, Z. Sofer, F. Sanek, B. Khezri, R.D. Webster and M. Pumera, Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis, Nanoscale, 4 (2012) 5002.
  • E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.
  • H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc., 132 (2010) 13978-13980.
  • G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49 (2011) 2693-2701.
  • J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem., 18 (2011) 1082-1090.
  • E. Sumesh, M.S. Bootharaju, A.T. Pradeep, A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water, J. Hazard. Mater. 189 (2011) 450.
  • C. Gunawan, W.Y. Teoh, C.P. Marquis, J. Lifia and R. Amal, Reversible antimicrobial photoswitching in nanosilver, Small, 5 (2009) 341-344.
  • P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M.A. Lefdil, R. Díaz, XPS study of silver, nickel and bimetallic silver– nickel nanoparticles prepared by seed-mediated growth, Appl. Surf. Sci., 258 (2012) 8807.
Year 2018, Volume: 46 Issue: 2, 159 - 167, 03.06.2018

Abstract

References

  • J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron., 74 (2015) 71-77.
  • Z. Liu, Y. Guo, C. Dong, A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite, Talanta, 137 (2015) 87-93.
  • G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, and P.J. Kelly, Doping Graphene With Metal Contacts, Phys. Rev. Let., 101 (2008) 268031-268034.
  • B. Uchoa, C.Y. Lin, and A.H. Castro Neto, Tailoring graphene with metals on top, Phys. Rev. B, 77 (2008) 035421-035425.
  • G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction, J. Am. Chem. Soc., 131, 2009, 8262- 8270.
  • Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 11 (2009) 846–849.
  • T. Maiyalagan, X. Dong, P. Chen, X. Wang, Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application, J. Mater. Chem., 22 (2012) 5286-5290.
  • K.S. Suslick, Ultrasound: Its chemical, physical and biological effects, VCH Verlagsgesellschaft, Weinheim, Germany, 1988.
  • B. Neppolian, C. Wang, Muthupandian Ashokkumar. Sonochemically synthesized mono and bimetallic Au– Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity, Ultrason. Sonochem., 21 (2014) 1948-1953.
  • B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Graphene oxide based Pt–TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency, Ultrason. Sonochem., 19 (2012) 9-15.
  • S. Zhu, J. Guo, J. Dong, Zn Cui, T. Lu, C. Zhu, D. Zhang, J. Ma, Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors, Ultrason. Sonochem., 20 (2013) 872-880.
  • L. Zhu, J.D. Chung, W.C. Oh, Rapid sonochemical synthesis of novel PbSe–graphene–TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS, Ultrason. Sonochem., 27 (2015) 252-261.
  • M. Giovanni, H.L. Poh, A. Ambrosi, G. Zhao, Z. Sofer, F. Sanek, B. Khezri, R.D. Webster and M. Pumera, Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis, Nanoscale, 4 (2012) 5002.
  • E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.
  • H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc., 132 (2010) 13978-13980.
  • G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49 (2011) 2693-2701.
  • J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem., 18 (2011) 1082-1090.
  • E. Sumesh, M.S. Bootharaju, A.T. Pradeep, A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water, J. Hazard. Mater. 189 (2011) 450.
  • C. Gunawan, W.Y. Teoh, C.P. Marquis, J. Lifia and R. Amal, Reversible antimicrobial photoswitching in nanosilver, Small, 5 (2009) 341-344.
  • P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M.A. Lefdil, R. Díaz, XPS study of silver, nickel and bimetallic silver– nickel nanoparticles prepared by seed-mediated growth, Appl. Surf. Sci., 258 (2012) 8807.
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Burak Derkus

Pınar Acar Bozkurt

Publication Date June 3, 2018
Acceptance Date March 26, 2018
Published in Issue Year 2018 Volume: 46 Issue: 2

Cite

APA Derkus, B., & Bozkurt, P. A. (2018). Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic. Hacettepe Journal of Biology and Chemistry, 46(2), 159-167.
AMA Derkus B, Bozkurt PA. Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic. HJBC. June 2018;46(2):159-167.
Chicago Derkus, Burak, and Pınar Acar Bozkurt. “Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure As Efficient Peroxidase Mimic”. Hacettepe Journal of Biology and Chemistry 46, no. 2 (June 2018): 159-67.
EndNote Derkus B, Bozkurt PA (June 1, 2018) Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic. Hacettepe Journal of Biology and Chemistry 46 2 159–167.
IEEE B. Derkus and P. A. Bozkurt, “Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic”, HJBC, vol. 46, no. 2, pp. 159–167, 2018.
ISNAD Derkus, Burak - Bozkurt, Pınar Acar. “Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure As Efficient Peroxidase Mimic”. Hacettepe Journal of Biology and Chemistry 46/2 (June 2018), 159-167.
JAMA Derkus B, Bozkurt PA. Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic. HJBC. 2018;46:159–167.
MLA Derkus, Burak and Pınar Acar Bozkurt. “Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure As Efficient Peroxidase Mimic”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 2, 2018, pp. 159-67.
Vancouver Derkus B, Bozkurt PA. Multilayer Graphene Oxide-Silver Nanoparticle Nanostructure as Efficient Peroxidase Mimic. HJBC. 2018;46(2):159-67.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc