Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants

Yıl 2018, Cilt: 46 Sayı: 2, 263 - 272, 03.06.2018

Öz

Tomato is one of the most important food crops immensely affected by water scarcity. Therefore, it is vital to
find biocontrol agents for improving the yield of tomato crop in arid areas. The fungal genus, Trichoderma
is widely used as an eco-friendly, biocontrol agent in commercial formulas because of the various beneficial
effects it has on plants including the resistance to biotic and abiotic stresses. In the present study, the effects
of an isolate of Trichoderma atroviride ID20G (Ta) on tomato (Solanum lycopersicum L.) seedlings were
investigated under drought stress. The isolated fungus was identified using ITS (internal transcribed spacer)
sequences. Root colonization by Ta induced changes in growth performance indexes such as root growth, root
branching, and leaf number as compared to the untreated seedlings. Chlorophyll and carotenoid contents of
the untreated tomato seedlings decreased after drought stress along with extensive membrane deterioration,
whereas seed colonization by Ta prevented lipid oxidation and ameliorated the harmful effects of drought on
pigment contents. Antioxidant enzyme activity was elevated and hydrogen peroxide (H2O2) concentration was
found to decrease under drought stress in the Ta treated seedlings. These observations suggest that colonization
of tomato seedlings by Ta is effective in counteracting the injurious effects of drought, and therefore, may
have a prominent role in increasing the drought tolerance of tomato plant by decreasing H2O2 concentration
and activating the antioxidant enzymes. Furthermore, fungus-based biocontrol agent formulation of Ta might
serve as a potential tool in tomato agriculture owing to its low cost, effectiveness, and characteristics required
for balancing the natural ecology.

Kaynakça

  • H.D.V. Saba, M. Manisha, K.S. Prashant, H. Farham, A. Tauseff, Trichoderma a promising plant growth stimulator and biocontrol agent, Mycosphere, 3 (2012) 524-531.
  • M. Tucci, M. Ruocco, L.D. Masi, M.D. Palma, M. Lorito, The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype, Mol. Plant Pathol., 12 (2011) 341-354.
  • M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra, Plant drought stress: effects, mechanisms and management, Agro. Sust. Dev., 29 (2009) 185-212.
  • F. Mastouri, T. Bjorkman, G.E. Harman, Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit, Mol. PlantMicrobe Interact. J., 25 (2012) 1264-1271.
  • N.S. Guler, N. Pehlivan, S.A. Karaoglu, S. Guzel, A. Bozdeveci, Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings, Acta Physiol. Plant., 38 (2016) 132.
  • G.E. Harman, Overview of mechanisms and uses of Trichoderma spp. Phytopathol., 96 (2006) 190-194.
  • N. Shukla, R.P. Awasthi, L. Rawat, Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum, Annals Appl. Biol., 66 (2015) 171- 182.
  • F.A.O. (2015). http://www.fao.org/faostat/en/#data/ QC/visualize. [accessed December 2015]
  • H.T. Aldrich, K. Salandanan, P. Kendall, M. Bunning, F. Stonaker, O. Kulen, C. Stushnoff,. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content, J. Sci. Food. Agric., 90 (2010) 2548-2555.
  • S.A. Karaoglu, S. Ulker, Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey), J. Basic Microbiol., 46 (2006) 208-218.
  • D.I. Arnon, Copper Enzymes in Chloroplasts, Polyphenoloxidase in Beta vulgaris, Plant Physiol., 24 (1949) 1-15.
  • E.M.J. Jaspars, Pigmentation of tobacco crowngall tissues cultured in vitro in dependence of the composition of the medium, Physiol. Plant., 18 (1965) 933-940.
  • R.L. Heath, L. Packer, Photoperoxidation in isolated chloroplast, I. Kinetics and stochiometry of fatty acid peroxidation, Arc. Biochem Biophys., 125 (1968) 189- 198.
  • V. Velikova, I. Yordanov, A. Edreva, Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines, Plant Sci., 151 (2000) 59-66.
  • M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248-254.
  • C. Beauchamp, I. Fridovich, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44 (1971) 276-287.
  • H. Urbanek, E. Kuzniak-Gebarowska, K. Herka, Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase, Acta. Physiol. Plant., 13 (1991) 43-50.
  • H.E. Aebi, Catalase, (Ed: Bergmeyer HU), Methods of Enzymatic Analysis. 3rd edn. Verlag Chemie, Weinheim, Florida, (1983) 273-286.
  • Y. Nakano, K. Asada, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 22 (1981) 867-880.
  • A. Hashem, E.F. Abd Allah, A.A. Alqarawi, A. Asma, A.A. Al-Huqail, D. Egamberdieva, Alleviation of abiotic stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier, J. Plant Interact., 9 (2014) 857-868.
  • N. Shukla, R.P. Awasthi, L. Rawat, J. Kumar,. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress, Plant Physiol. Biochem., 54 (2012) 78-88.
  • R.K. Behera, PC. Mishra, N.K. Choudhary, High irradiance and water stress induced alterations in pigment composition and chloroplast activities of primary wheat leaves, J. Plant Physiol., 159 (2002) 967-973.
  • H. Bae, R.C. Sicher, M.S. Kim, S.H. Kim, M.D. Strem, RL. Melnick, BA. Bailey, The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao, J. Exp. Bot., 60 (2009) 3279-295.
  • G.E. Harman, C.R. Howell, A. Viterbo, I. Chet, Trichoderma spp.: opportunistic avirulent plant symbionts, Nature Rev., 2 (2004) 43-56.
  • A. Martinez-Medina, M.D.M. Alguacil, J.A. Pascual, 272 S.C.M. van Wees, Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants, J. Chem. Ecol., 40 (2014) 804-815.
  • L. Rawat, Y. Singh, N. Shukla, J. Kumar, Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions, Arch. Phytopath. and Plant Protect., 146 (2013) 1442-1467.
  • R. Hajiboland, N. Aliasgharzadeh, S.F. Laiegh, C. Poschenrieder, Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicon L.) plants, Plant Soil., 331 (2012) 313-327.
Yıl 2018, Cilt: 46 Sayı: 2, 263 - 272, 03.06.2018

Öz

Kaynakça

  • H.D.V. Saba, M. Manisha, K.S. Prashant, H. Farham, A. Tauseff, Trichoderma a promising plant growth stimulator and biocontrol agent, Mycosphere, 3 (2012) 524-531.
  • M. Tucci, M. Ruocco, L.D. Masi, M.D. Palma, M. Lorito, The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype, Mol. Plant Pathol., 12 (2011) 341-354.
  • M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra, Plant drought stress: effects, mechanisms and management, Agro. Sust. Dev., 29 (2009) 185-212.
  • F. Mastouri, T. Bjorkman, G.E. Harman, Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit, Mol. PlantMicrobe Interact. J., 25 (2012) 1264-1271.
  • N.S. Guler, N. Pehlivan, S.A. Karaoglu, S. Guzel, A. Bozdeveci, Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings, Acta Physiol. Plant., 38 (2016) 132.
  • G.E. Harman, Overview of mechanisms and uses of Trichoderma spp. Phytopathol., 96 (2006) 190-194.
  • N. Shukla, R.P. Awasthi, L. Rawat, Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum, Annals Appl. Biol., 66 (2015) 171- 182.
  • F.A.O. (2015). http://www.fao.org/faostat/en/#data/ QC/visualize. [accessed December 2015]
  • H.T. Aldrich, K. Salandanan, P. Kendall, M. Bunning, F. Stonaker, O. Kulen, C. Stushnoff,. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content, J. Sci. Food. Agric., 90 (2010) 2548-2555.
  • S.A. Karaoglu, S. Ulker, Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey), J. Basic Microbiol., 46 (2006) 208-218.
  • D.I. Arnon, Copper Enzymes in Chloroplasts, Polyphenoloxidase in Beta vulgaris, Plant Physiol., 24 (1949) 1-15.
  • E.M.J. Jaspars, Pigmentation of tobacco crowngall tissues cultured in vitro in dependence of the composition of the medium, Physiol. Plant., 18 (1965) 933-940.
  • R.L. Heath, L. Packer, Photoperoxidation in isolated chloroplast, I. Kinetics and stochiometry of fatty acid peroxidation, Arc. Biochem Biophys., 125 (1968) 189- 198.
  • V. Velikova, I. Yordanov, A. Edreva, Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines, Plant Sci., 151 (2000) 59-66.
  • M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248-254.
  • C. Beauchamp, I. Fridovich, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44 (1971) 276-287.
  • H. Urbanek, E. Kuzniak-Gebarowska, K. Herka, Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase, Acta. Physiol. Plant., 13 (1991) 43-50.
  • H.E. Aebi, Catalase, (Ed: Bergmeyer HU), Methods of Enzymatic Analysis. 3rd edn. Verlag Chemie, Weinheim, Florida, (1983) 273-286.
  • Y. Nakano, K. Asada, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 22 (1981) 867-880.
  • A. Hashem, E.F. Abd Allah, A.A. Alqarawi, A. Asma, A.A. Al-Huqail, D. Egamberdieva, Alleviation of abiotic stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier, J. Plant Interact., 9 (2014) 857-868.
  • N. Shukla, R.P. Awasthi, L. Rawat, J. Kumar,. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress, Plant Physiol. Biochem., 54 (2012) 78-88.
  • R.K. Behera, PC. Mishra, N.K. Choudhary, High irradiance and water stress induced alterations in pigment composition and chloroplast activities of primary wheat leaves, J. Plant Physiol., 159 (2002) 967-973.
  • H. Bae, R.C. Sicher, M.S. Kim, S.H. Kim, M.D. Strem, RL. Melnick, BA. Bailey, The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao, J. Exp. Bot., 60 (2009) 3279-295.
  • G.E. Harman, C.R. Howell, A. Viterbo, I. Chet, Trichoderma spp.: opportunistic avirulent plant symbionts, Nature Rev., 2 (2004) 43-56.
  • A. Martinez-Medina, M.D.M. Alguacil, J.A. Pascual, 272 S.C.M. van Wees, Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants, J. Chem. Ecol., 40 (2014) 804-815.
  • L. Rawat, Y. Singh, N. Shukla, J. Kumar, Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions, Arch. Phytopath. and Plant Protect., 146 (2013) 1442-1467.
  • R. Hajiboland, N. Aliasgharzadeh, S.F. Laiegh, C. Poschenrieder, Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicon L.) plants, Plant Soil., 331 (2012) 313-327.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Necla Pehlivan

Neslihan Saruhan-güler Bu kişi benim

Şengül Alpay-karaoğlu Bu kişi benim

Yayımlanma Tarihi 3 Haziran 2018
Kabul Tarihi 2 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 46 Sayı: 2

Kaynak Göster

APA Pehlivan, N., Saruhan-güler, N., & Alpay-karaoğlu, Ş. (2018). The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants. Hacettepe Journal of Biology and Chemistry, 46(2), 263-272.
AMA Pehlivan N, Saruhan-güler N, Alpay-karaoğlu Ş. The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants. HJBC. Haziran 2018;46(2):263-272.
Chicago Pehlivan, Necla, Neslihan Saruhan-güler, ve Şengül Alpay-karaoğlu. “The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum Lycopersicum L.) Plants”. Hacettepe Journal of Biology and Chemistry 46, sy. 2 (Haziran 2018): 263-72.
EndNote Pehlivan N, Saruhan-güler N, Alpay-karaoğlu Ş (01 Haziran 2018) The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants. Hacettepe Journal of Biology and Chemistry 46 2 263–272.
IEEE N. Pehlivan, N. Saruhan-güler, ve Ş. Alpay-karaoğlu, “The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants”, HJBC, c. 46, sy. 2, ss. 263–272, 2018.
ISNAD Pehlivan, Necla vd. “The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum Lycopersicum L.) Plants”. Hacettepe Journal of Biology and Chemistry 46/2 (Haziran 2018), 263-272.
JAMA Pehlivan N, Saruhan-güler N, Alpay-karaoğlu Ş. The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants. HJBC. 2018;46:263–272.
MLA Pehlivan, Necla vd. “The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum Lycopersicum L.) Plants”. Hacettepe Journal of Biology and Chemistry, c. 46, sy. 2, 2018, ss. 263-72.
Vancouver Pehlivan N, Saruhan-güler N, Alpay-karaoğlu Ş. The Effect of Trichoderma Seed Priming to Drought Resistance in Tomato (Solanum lycopersicum L.) Plants. HJBC. 2018;46(2):263-72.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc