Yıl 2018,
Cilt: 46 Sayı: 1, 69 - 77, 01.03.2018
Aylin Altınışık Tagaç
,
Önder Sarp
Kadir Yurkakoç
Kaynakça
- A. Altinisik, K. Yurdakoc, Chitosan/poly(vinyl alcohol)
hydrogels for amoxicillin release, Polym. Bull., 71
(2014) 759-774.
- K.G.H. Desai, H. J. Park, Encapsulation of vitamin C in
tripolyphosphate cross-linked chitosan microspheres
by spray drying, J. Microencapsul., 22 (2005) 179-
192.
- M. Dogan, N. Ugurlu, F. Yulek, Ketorolac tromethamine
loaded chitosan nanoparticles as a nanotherapeutic
system for ocular diseases, J. Biol. Chem., 41 (2013)
81-86.
- L. Bugnicourt, L. Catherine, Interests of chitosan
nanoparticles ionically cross-linked with
tripolyphosphate for biomedical applications, Prog.
Polym. Sci., 60 (2016) 1-17.
- K.A. Janes, P. Calvo, M.J. Alonso, Polysaccharide
colloidal particles as delivery systems for
macromolecules, Adv. Drug. Deliv. Rev., 47 (2001) 83-
97.
- M. Garcia-Fuentes, M.J. Alonso, Chitosan-based
drug nanocarriers: where do we stand?, J. Control.
Release., 161 (2012) 496-504.
- A. Grenha, Chitosan nanoparticles: a survey of
preparation methods, J. Drug Target., 20 (2012) 291-
300.
- W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism
of monodisperse, low molecular weight chitosan
nanoparticles by ionic gelation technique, Coll. Surf.
B., 90 (2012) 21-27.
13. M. Hamidi, A. Azadi, H. Ashrafi, P. Rafiei, S.
Mohamadi-samani, Taguchi orthogonal array design
for the optimization of hydrogel nanoparticles for the
intravenous delivery of small-molecule drugs, J. Appl.
Polym. Sci., 126 (2012) 1714-1724.
14. E. Esposito, F. Cervellati, E. Menegatti, C. Nastruzzi,
R. Cortesi, Spray dried Eudragit microparticles as
encapsulation devices for vitamin C, Int. J. Pharm.,
242 (2002) 329-334.
15. S.Y. Shiau, T.S. Hsu, Quantification of
vitamin C requirement for juvenile hybrid
tilapia, Oreochromisniloticus=Oreochromis aureus,
with l-ascorbyl-2 monophosphate-Na and l-ascorbyl2-monophosphate-Mg,
Aquaculture, 175 (1999) 317–
326.
- E.J. Jacobs, C.J. Connell, A.V. Patel, A. Chao, C.
Rodriguez, J. Seymour, et al., Vitamin C and vitamin
E supplement use and colorectal cancer mortality
in a large American cancer society cohort, Cancer
Epidemiol. Biomar. Prev,, 10 (2001) 17-23.
- G. Shklar, J.L. Schwartz, Ascorbic acid and cancer,
Subcell. Biochem., 25 (1996) 233-247.
- H.M. Zhang, N. Wakisaka, Vitamin C inhibits
the growth of a bacterial risk factor for gastric
carcinoma: Helicobacter pylori, Cancer, 80 (1997)
1897-1903.
- A. Alishahi, et al., Shelf life and delivery enhancement
of vitamin C using chitosan nanoparticles, Food
Chem., 126 (2011) 935-940.
- M. Mietus-Snyder, M. J. Malloy, Endothelial dysfunction
occurs in children with two genetic hyperlipidemias:
improvement with antioxidant vitamin therapy, J.
Pediatr., 133 (1998) 35-40.
- M. Jeserich, T. Schindler, M. Olschewski, M.
Unmüssig, H. Just, U. Solzbach, Vitamin C improves
endothelial function of epicardial coronary arteries
in patients with hypercholesterolaemia or essential
hypertension—assessed by cold pressor testing, Eur.
Heart J., 20 (1999) 1676-1680.
- B. Mosinger, Higher cholesterol in human LDL is
associated with the increase of oxidation susceptibility
and the decrease of antioxidant defence: experimental
and simulation data, BBA Mol. Bas., 1453 (1999) 180-
184.
- H. Ravi, V. Baskaran, Biodegradable chitosanglycolipid
hybrid nanogels: A novel approach to
encapsulate fucoxanthin for improved stability and
bioavailability, Food Hydrocoll., 43 (2015) 717-725.
- S. Vimal, et al., Synthesis and characterization of CS/
TPP nanoparticles for oral delivery of gene in fish,
Aquaculture., 358 (2012) 14-22.
- J. Gu, K. Al-Bayati, E.A. Ho, Development of antibodymodified
chitosan nanoparticles for the targeted
delivery of siRNA across the blood-brain barrier as a
strategy for inhibiting HIV replication in astrocytes,
Drug. Deliv. Transl. Res., (2017) 1-10.
- K. Santhi, et al., In-vitro Characterization of chitosan
nanoparticles of fluconazole as a carrier for Sustained
ocular delivery, J. Nanosci. Nanotechnol., 7 (2017) 41-
50.
- Q. Lifeng, et al. Preparation and antibacterial activity
of chitosan nanoparticles, Carbohydr. Res., 339
(2004) 2693-2700.
- S. Mitra, et al. Tumour targeted delivery of
encapsulated dextran–doxorubicin conjugate using
chitosan nanoparticles as carrier, J. Control. Release.,
74 (2001) 317-323.
- Y. Xu, Y. Du., Effect of molecular structure of
chitosan on protein delivery properties of chitosan
nanoparticles, Int. J. Pharm., 250 (2003) 215-226.
- K.A. Janes, et al., Chitosan nanoparticles as delivery
systems for doxorubicin, J. Control. Release., 73
(2001): 255-267.
- Q. Gan, et al., Modulation of surface charge, particle
size and morphological properties of chitosan–TPP
nanoparticles intended for gene delivery, Colloid.
Surf. B Biointer., 44 (2005) 65-73.
- Y. Pan, et al., Bioadhesive polysaccharide in protein
delivery system: chitosan nanoparticles improve the
intestinal absorption of insulin in vivo, Int. J. Pharm.,
249 (2002) 139-147.
- S. Dash, et al., Kinetic modeling on drug release from
controlled drug delivery systems, Acta Pol Pharm, 67
(2010) 217-23.
- R.W. Korsemeyer, R. Gurny, E.M. Doelker, P. Buri, N.A.
Peppas, Mechanism of solute release from porous
hydrophilic polymers, Int. J. Pharm., 15 (1983) 25-35
Controlled Release of Vitamin C from Chitosan Nanoparticles
Yıl 2018,
Cilt: 46 Sayı: 1, 69 - 77, 01.03.2018
Aylin Altınışık Tagaç
,
Önder Sarp
Kadir Yurkakoç
Öz
This work is consisted of two parts. The first was the synthesis and characterization of nanoparticles (ChNPs)
from Chitosan, a natural biopolymer. In the second part, preparation of Vitamin C loaded ChNPs and release
of vitamin C from the loaded nanoparticles were investigated. ChNPs were synthesized according to the ionic
gelation method and sodium tripolyphosphate (TPP) was used as the crosslinking agent. The particle size
distribution of the synthesized ChNPs was determined by using Zeta Sizer. Surface morphologies and crystal
structures of the nanoparticles were investigated by Scanning Electron Microscopy (SEM) and X- ray diffraction
(XRD) analysis, respectively. Structural analysis and thermal properties of ChNPs were also investigated by
Fournier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Release
porofile of the Vitamin C loaded nanoparticles at same time were determined. As a result, average particle size
of the ChNPs was measured as 10 nm and loading efficiency of the ChNPs was calculated as 86% with very high
vitamin C concentration. Finally, the release mechanism of vitamin C from nanoparticles was determined to be
controlled by diffusion and swelling
Kaynakça
- A. Altinisik, K. Yurdakoc, Chitosan/poly(vinyl alcohol)
hydrogels for amoxicillin release, Polym. Bull., 71
(2014) 759-774.
- K.G.H. Desai, H. J. Park, Encapsulation of vitamin C in
tripolyphosphate cross-linked chitosan microspheres
by spray drying, J. Microencapsul., 22 (2005) 179-
192.
- M. Dogan, N. Ugurlu, F. Yulek, Ketorolac tromethamine
loaded chitosan nanoparticles as a nanotherapeutic
system for ocular diseases, J. Biol. Chem., 41 (2013)
81-86.
- L. Bugnicourt, L. Catherine, Interests of chitosan
nanoparticles ionically cross-linked with
tripolyphosphate for biomedical applications, Prog.
Polym. Sci., 60 (2016) 1-17.
- K.A. Janes, P. Calvo, M.J. Alonso, Polysaccharide
colloidal particles as delivery systems for
macromolecules, Adv. Drug. Deliv. Rev., 47 (2001) 83-
97.
- M. Garcia-Fuentes, M.J. Alonso, Chitosan-based
drug nanocarriers: where do we stand?, J. Control.
Release., 161 (2012) 496-504.
- A. Grenha, Chitosan nanoparticles: a survey of
preparation methods, J. Drug Target., 20 (2012) 291-
300.
- W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism
of monodisperse, low molecular weight chitosan
nanoparticles by ionic gelation technique, Coll. Surf.
B., 90 (2012) 21-27.
13. M. Hamidi, A. Azadi, H. Ashrafi, P. Rafiei, S.
Mohamadi-samani, Taguchi orthogonal array design
for the optimization of hydrogel nanoparticles for the
intravenous delivery of small-molecule drugs, J. Appl.
Polym. Sci., 126 (2012) 1714-1724.
14. E. Esposito, F. Cervellati, E. Menegatti, C. Nastruzzi,
R. Cortesi, Spray dried Eudragit microparticles as
encapsulation devices for vitamin C, Int. J. Pharm.,
242 (2002) 329-334.
15. S.Y. Shiau, T.S. Hsu, Quantification of
vitamin C requirement for juvenile hybrid
tilapia, Oreochromisniloticus=Oreochromis aureus,
with l-ascorbyl-2 monophosphate-Na and l-ascorbyl2-monophosphate-Mg,
Aquaculture, 175 (1999) 317–
326.
- E.J. Jacobs, C.J. Connell, A.V. Patel, A. Chao, C.
Rodriguez, J. Seymour, et al., Vitamin C and vitamin
E supplement use and colorectal cancer mortality
in a large American cancer society cohort, Cancer
Epidemiol. Biomar. Prev,, 10 (2001) 17-23.
- G. Shklar, J.L. Schwartz, Ascorbic acid and cancer,
Subcell. Biochem., 25 (1996) 233-247.
- H.M. Zhang, N. Wakisaka, Vitamin C inhibits
the growth of a bacterial risk factor for gastric
carcinoma: Helicobacter pylori, Cancer, 80 (1997)
1897-1903.
- A. Alishahi, et al., Shelf life and delivery enhancement
of vitamin C using chitosan nanoparticles, Food
Chem., 126 (2011) 935-940.
- M. Mietus-Snyder, M. J. Malloy, Endothelial dysfunction
occurs in children with two genetic hyperlipidemias:
improvement with antioxidant vitamin therapy, J.
Pediatr., 133 (1998) 35-40.
- M. Jeserich, T. Schindler, M. Olschewski, M.
Unmüssig, H. Just, U. Solzbach, Vitamin C improves
endothelial function of epicardial coronary arteries
in patients with hypercholesterolaemia or essential
hypertension—assessed by cold pressor testing, Eur.
Heart J., 20 (1999) 1676-1680.
- B. Mosinger, Higher cholesterol in human LDL is
associated with the increase of oxidation susceptibility
and the decrease of antioxidant defence: experimental
and simulation data, BBA Mol. Bas., 1453 (1999) 180-
184.
- H. Ravi, V. Baskaran, Biodegradable chitosanglycolipid
hybrid nanogels: A novel approach to
encapsulate fucoxanthin for improved stability and
bioavailability, Food Hydrocoll., 43 (2015) 717-725.
- S. Vimal, et al., Synthesis and characterization of CS/
TPP nanoparticles for oral delivery of gene in fish,
Aquaculture., 358 (2012) 14-22.
- J. Gu, K. Al-Bayati, E.A. Ho, Development of antibodymodified
chitosan nanoparticles for the targeted
delivery of siRNA across the blood-brain barrier as a
strategy for inhibiting HIV replication in astrocytes,
Drug. Deliv. Transl. Res., (2017) 1-10.
- K. Santhi, et al., In-vitro Characterization of chitosan
nanoparticles of fluconazole as a carrier for Sustained
ocular delivery, J. Nanosci. Nanotechnol., 7 (2017) 41-
50.
- Q. Lifeng, et al. Preparation and antibacterial activity
of chitosan nanoparticles, Carbohydr. Res., 339
(2004) 2693-2700.
- S. Mitra, et al. Tumour targeted delivery of
encapsulated dextran–doxorubicin conjugate using
chitosan nanoparticles as carrier, J. Control. Release.,
74 (2001) 317-323.
- Y. Xu, Y. Du., Effect of molecular structure of
chitosan on protein delivery properties of chitosan
nanoparticles, Int. J. Pharm., 250 (2003) 215-226.
- K.A. Janes, et al., Chitosan nanoparticles as delivery
systems for doxorubicin, J. Control. Release., 73
(2001): 255-267.
- Q. Gan, et al., Modulation of surface charge, particle
size and morphological properties of chitosan–TPP
nanoparticles intended for gene delivery, Colloid.
Surf. B Biointer., 44 (2005) 65-73.
- Y. Pan, et al., Bioadhesive polysaccharide in protein
delivery system: chitosan nanoparticles improve the
intestinal absorption of insulin in vivo, Int. J. Pharm.,
249 (2002) 139-147.
- S. Dash, et al., Kinetic modeling on drug release from
controlled drug delivery systems, Acta Pol Pharm, 67
(2010) 217-23.
- R.W. Korsemeyer, R. Gurny, E.M. Doelker, P. Buri, N.A.
Peppas, Mechanism of solute release from porous
hydrophilic polymers, Int. J. Pharm., 15 (1983) 25-35