Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 47 Sayı: 3, 225 - 234, 23.10.2019
https://doi.org/10.15671/hjbc.626742

Öz

Kaynakça

  • S. Umehara, M. Karhanek, R.W. Davis, N. Pourmand, Labelfree biosensing with functionalized nanopipette probes, Proc. Natl. Acad. Sci., 106 (2009) 4611-4616.
  • 2. A. Han, M. Creus, G. Schurmann, V. Linder, T.R. Ward, N.F. de Rooij, U. Staufer, Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores, Anal. Chem., 80 (2008) 4651-4658.
  • 3. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296 (2002) 2198- 2200.
  • 4. A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid state nanopores for high throughput nanoparticle separation, J. Phys-Condens Mat., 22 (2010) 454107.
  • 5. H. Bayley, C.R. Martin, Resistive-Pulse Sensing-From Microbes to Molecules, Chem. Rev., 100 (2000) 2575-2594.
  • 6. Y.X. Wang, K. Kececi, M.V. Mirkin, V. Mani, N. Sardesai, J.F. Rusling, Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound antipeanut IgY, Chem. Sci., 4 (2013) 655-663.
  • 7. S. Wen, T. Zeng, L. Liu, K. Zhao, Y. Zhao, X. Liu, H.-C. Wu, Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore, J. Am. Chem. Soc., 133 (2011) 18312-18317.
  • 8. D. Stoddart, A.J. Heron, J. Klingelhoefer, E. Mikhailova, G. Maglia, H. Bayley, Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore, Nano Lett., 10 (2010) 3633-3637.
  • 9. K. Healy, B. Schiedt, Z. Siwy, A.P. Morrison, R. Neumann, Single-molecule DNA transport through individual conical polymer nanopores, Biophys J., 88 (2005) 660a-660a.
  • 10. M. Kühnemund, M. Nilsson, Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore, Biosens. Bioelectron., 67 (2015) 11-17.
  • 11. K. Kececi, N. San, D. Kaya, Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268-274.
  • 12. M. Ali, S. Nasir, P. Ramirez, J. Cervera, S. Mafe, W. Ensinger, Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments, ACS Nano, 6 (2012) 9247-9257.
  • 13. M. Ali, I. Ahmed, P. Ramirez, S. Nasir, S. Mafe, C.M. Niemeyer, W. Ensinger, A redox-sensitive nanofluidic diode based on nicotinamide-modified asymmetric nanopores, Sensor Actuat. B-Chem., 240 (2017) 895-902.
  • 14. A. Kocer, L. Tauk, P. Dejardin, Nanopore sensors: From hybrid to abiotic systems, Biosens. Bioelectron., 38 (2012) 1-10.
  • 15. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of pore geometry on resistive-pulse sensing of DNA using track-etched PET nanopore membrane, Electrochim. Acta, 202 (2016) 157- 165.
  • 16. S. Lee, Y. Zhang, H.S. White, C.C. Harrell, C.R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem., 76 (2004) 6108- 6115.
  • 17. Z. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16 (2006) 735-746.
  • 18. Q.H. Nguyen, M. Ali, V. Bayer, R. Neumann, W. Ensinger, Charge-selective transport of organic and protein analytes through synthetic nanochannels, Nanotechnology, 21 (2010) 365701.
  • 19. D.K. Kaya, Kaan, Transport characteristics of selected dyes through track-etched multiporous pet membranes, Hacettepe J. Biol. Chem., 46 (2018) 1-11.
  • 20. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 21. S. Z. Siwy, S. Howorka, Engineered voltage-responsive nanopores, Chem. Soc. Rev., 39 (2010) 1115-1132.
  • 22. Z.S. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16 (2006) 735-746.
  • 23. D. Wang, G. Wang, Dynamics of ion transport and electric double layer in single conical nanopores, J. Electroanal. Chem., 779 (2016) 39-46.
  • 24. W.J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc., 133 (2011) 13300-13303.
  • 25. Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Appl. Phys. A-Mater., 76 (2003) 781-785.
  • 26. D. Momotenko, F. Cortés-Salazar, J. Josserand, S. Liu, Y. Shao, H.H. Girault, Ion current rectification and rectification inversion in conical nanopores: a perm-selective view, Phys. Chem. Chem. Phys., 13 (2011) 5430-5440.
  • 27. C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69 (1997) 4627- 4633.
  • 28. N. Sa, L.A. Baker, Rectification of nanopores at surfaces, J. Am. Chem. Soc., 133 (2011) 10398-10401.
  • 29. R. Yan, W. Liang, R. Fan, P. Yang, Nanofluidic diodes based on nanotube heterojunctions, Nano Lett., 9 (2009) 3820-3825.
  • 30. X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, D. Zhu, A biomimetic asymmetric responsive single nanochannel, J. Am. Chem. Soc., 132 (2010) 11736-11742.
  • 31. D. Momotenko, H.H. Girault, Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores, J. Am. Chem. Soc., 133 (2011) 14496- 14499.
  • 32. H.S. White, A. Bund, Ion current rectification at nanopores in glass membranes, Langmuir, 24 (2008) 2212-2218.
  • 33. L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradientdependent ion current rectification in charged conical nanopores, Langmuir, 28 (2011) 2194-2199.
  • 34. Z. Siwy, Y. Gu, H. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y. Korchev, Rectification and voltage gating of ion currents in a nanofabricated pore, EPL (Europhysics Letters), 60 (2002) 349.
  • 35. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.-O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 36. D. Woermann, Analysis of non-ohmic electrical current– voltage characteristic of membranes carrying a single tracketched conical pore, Nucl. Instrum. Meth. B, 194 (2002) 458-462.
  • 37. D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference, Phys. Chem. Chem. Phys., 5 (2003) 1853-1858.
  • 38. D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: revisited, Phys Chem Chem Phys, 6 (2004) 3130-3132.
  • 39. Q. Pu, J. Yun, H. Temkin, S. Liu, Ion-enrichment and iondepletion effect of nanochannel structures., Nano Lett., 4 (2004) 1099-1103.
  • 40. C. Kubeil, A. Bund, The role of nanopore geometry for the rectification of ionic currents, J Phys Chem C, 115 (2011) 7866-7873.
  • 41. J.-P. Hsu, T.-W. Lin, C.-Y. Lin, S. Tseng, Salt-dependent ion current rectification in conical nanopores: impact of salt concentration and cone angle, J. Phys. Chem. C, 121 (2017) 28139-28147.
  • 42. J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys., 124 (2006) 104706.
  • 43. W. Sparreboom, A. van den Berg, J.C. Eijkel, Principles and applications of nanofluidic transport, Nature Nanotech., 4 (2009) 713.
  • 44. H. Daiguji, P. Yang, A. Majumdar, Ion transport in nanofluidic channels, Nano Lett., 4 (2004) 137-142.
  • 45. J.F. Pietschmann, M.T. Wolfram, M. Burger, C. Trautmann, G. Nguyen, M. Pevarnik, V. Bayer, Z. Siwy, Rectification properties of conically shaped nanopores: consequences of miniaturization, Phys. Chem. Chem. Phys., 15 (2013) 16917- 16926.
  • 46. I. Vlassiouk, S. Smirnov, Z. Siwy, Ionic selectivity of single nanochannels, Nano Lett., 8 (2008) 1978-1985.
  • 47. K.E. Venta, M.B. Zanjani, X. Ye, G. Danda, C.B. Murray, J.R. Lukes, M. Drndić, Gold nanorod translocations and charge measurement through solid-state nanopores., Nano Lett., 14 (2014) 5358-5364.
  • 48. K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel., Lab on a Chip., 12 (2012) 1332-1339.
  • 49. L. van Oeffelen, W. Van Roy, H. Idrissi, D. Charlier, L. Lagae, G. Borghs, Ion current rectification, limiting and overlimiting conductances in nanopores., PloS One., 10 (2015) e0124171.
  • 50. M. Chander, R. Kumar, S. Kumar, N. Kumar, S. Chakarvarti, Investigation of ionic transport through track-etched conical nanopores of PET membrane, Nano, 13 (2018) 1850011.
  • 51. J. Liu, M. Kvetny, J. Feng, D. Wang, B. Wu, W. Brown, G. Wang, Surface charge density determination of single conical nanopores based on normalized ion current rectification, Langmuir, 28 (2011) 1588-1595.
  • 52. R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Rectification of ionic current in a nanofluidic diode., Nano Lett., 7 (2007) 547-551.
  • 53. K. Zielinska, A. Gapeeva, O. Orelovich, P.Y. Apel, Diodelike properties of single-and multi-pore asymmetric track membranes, Nucl. Instrum. Meth. B, 326 (2014) 131-134.
  • 54. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.-O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532-535 (2003) 1061-1066.

Ionic Current Rectification in Track-Etched Single Conical Nanopores

Yıl 2019, Cilt: 47 Sayı: 3, 225 - 234, 23.10.2019
https://doi.org/10.15671/hjbc.626742

Öz

The ionic current rectification, which is a characteristic behavior of asymmetric nanopores, is an important phenomenon,
especially in biomolecule analysis. Rectification in nanopores resembles the diode element in electrical circuits, where
the ion current is allowed in only one direction. This behavior depends on certain parameters such as pore geometry, the
surface charge density of the pore, ionic concentration of electrolyte, applied potential and pressure. In this study, we
investigated the rectification behavior of ionic currents in conical pore experimentally and verified the results theoretically.
By altering the pH value of the electrolyte solution, we have obtained a variety of current-potential (I-V) curves which
have different ion current rectification values. We have compared these values with simulation results and figured out an
estimate for the surface charge density of the nanopore walls.

Kaynakça

  • S. Umehara, M. Karhanek, R.W. Davis, N. Pourmand, Labelfree biosensing with functionalized nanopipette probes, Proc. Natl. Acad. Sci., 106 (2009) 4611-4616.
  • 2. A. Han, M. Creus, G. Schurmann, V. Linder, T.R. Ward, N.F. de Rooij, U. Staufer, Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores, Anal. Chem., 80 (2008) 4651-4658.
  • 3. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296 (2002) 2198- 2200.
  • 4. A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid state nanopores for high throughput nanoparticle separation, J. Phys-Condens Mat., 22 (2010) 454107.
  • 5. H. Bayley, C.R. Martin, Resistive-Pulse Sensing-From Microbes to Molecules, Chem. Rev., 100 (2000) 2575-2594.
  • 6. Y.X. Wang, K. Kececi, M.V. Mirkin, V. Mani, N. Sardesai, J.F. Rusling, Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound antipeanut IgY, Chem. Sci., 4 (2013) 655-663.
  • 7. S. Wen, T. Zeng, L. Liu, K. Zhao, Y. Zhao, X. Liu, H.-C. Wu, Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore, J. Am. Chem. Soc., 133 (2011) 18312-18317.
  • 8. D. Stoddart, A.J. Heron, J. Klingelhoefer, E. Mikhailova, G. Maglia, H. Bayley, Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore, Nano Lett., 10 (2010) 3633-3637.
  • 9. K. Healy, B. Schiedt, Z. Siwy, A.P. Morrison, R. Neumann, Single-molecule DNA transport through individual conical polymer nanopores, Biophys J., 88 (2005) 660a-660a.
  • 10. M. Kühnemund, M. Nilsson, Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore, Biosens. Bioelectron., 67 (2015) 11-17.
  • 11. K. Kececi, N. San, D. Kaya, Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268-274.
  • 12. M. Ali, S. Nasir, P. Ramirez, J. Cervera, S. Mafe, W. Ensinger, Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments, ACS Nano, 6 (2012) 9247-9257.
  • 13. M. Ali, I. Ahmed, P. Ramirez, S. Nasir, S. Mafe, C.M. Niemeyer, W. Ensinger, A redox-sensitive nanofluidic diode based on nicotinamide-modified asymmetric nanopores, Sensor Actuat. B-Chem., 240 (2017) 895-902.
  • 14. A. Kocer, L. Tauk, P. Dejardin, Nanopore sensors: From hybrid to abiotic systems, Biosens. Bioelectron., 38 (2012) 1-10.
  • 15. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of pore geometry on resistive-pulse sensing of DNA using track-etched PET nanopore membrane, Electrochim. Acta, 202 (2016) 157- 165.
  • 16. S. Lee, Y. Zhang, H.S. White, C.C. Harrell, C.R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem., 76 (2004) 6108- 6115.
  • 17. Z. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16 (2006) 735-746.
  • 18. Q.H. Nguyen, M. Ali, V. Bayer, R. Neumann, W. Ensinger, Charge-selective transport of organic and protein analytes through synthetic nanochannels, Nanotechnology, 21 (2010) 365701.
  • 19. D.K. Kaya, Kaan, Transport characteristics of selected dyes through track-etched multiporous pet membranes, Hacettepe J. Biol. Chem., 46 (2018) 1-11.
  • 20. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 21. S. Z. Siwy, S. Howorka, Engineered voltage-responsive nanopores, Chem. Soc. Rev., 39 (2010) 1115-1132.
  • 22. Z.S. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16 (2006) 735-746.
  • 23. D. Wang, G. Wang, Dynamics of ion transport and electric double layer in single conical nanopores, J. Electroanal. Chem., 779 (2016) 39-46.
  • 24. W.J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc., 133 (2011) 13300-13303.
  • 25. Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Appl. Phys. A-Mater., 76 (2003) 781-785.
  • 26. D. Momotenko, F. Cortés-Salazar, J. Josserand, S. Liu, Y. Shao, H.H. Girault, Ion current rectification and rectification inversion in conical nanopores: a perm-selective view, Phys. Chem. Chem. Phys., 13 (2011) 5430-5440.
  • 27. C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69 (1997) 4627- 4633.
  • 28. N. Sa, L.A. Baker, Rectification of nanopores at surfaces, J. Am. Chem. Soc., 133 (2011) 10398-10401.
  • 29. R. Yan, W. Liang, R. Fan, P. Yang, Nanofluidic diodes based on nanotube heterojunctions, Nano Lett., 9 (2009) 3820-3825.
  • 30. X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, D. Zhu, A biomimetic asymmetric responsive single nanochannel, J. Am. Chem. Soc., 132 (2010) 11736-11742.
  • 31. D. Momotenko, H.H. Girault, Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores, J. Am. Chem. Soc., 133 (2011) 14496- 14499.
  • 32. H.S. White, A. Bund, Ion current rectification at nanopores in glass membranes, Langmuir, 24 (2008) 2212-2218.
  • 33. L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradientdependent ion current rectification in charged conical nanopores, Langmuir, 28 (2011) 2194-2199.
  • 34. Z. Siwy, Y. Gu, H. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y. Korchev, Rectification and voltage gating of ion currents in a nanofabricated pore, EPL (Europhysics Letters), 60 (2002) 349.
  • 35. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.-O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 36. D. Woermann, Analysis of non-ohmic electrical current– voltage characteristic of membranes carrying a single tracketched conical pore, Nucl. Instrum. Meth. B, 194 (2002) 458-462.
  • 37. D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference, Phys. Chem. Chem. Phys., 5 (2003) 1853-1858.
  • 38. D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: revisited, Phys Chem Chem Phys, 6 (2004) 3130-3132.
  • 39. Q. Pu, J. Yun, H. Temkin, S. Liu, Ion-enrichment and iondepletion effect of nanochannel structures., Nano Lett., 4 (2004) 1099-1103.
  • 40. C. Kubeil, A. Bund, The role of nanopore geometry for the rectification of ionic currents, J Phys Chem C, 115 (2011) 7866-7873.
  • 41. J.-P. Hsu, T.-W. Lin, C.-Y. Lin, S. Tseng, Salt-dependent ion current rectification in conical nanopores: impact of salt concentration and cone angle, J. Phys. Chem. C, 121 (2017) 28139-28147.
  • 42. J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys., 124 (2006) 104706.
  • 43. W. Sparreboom, A. van den Berg, J.C. Eijkel, Principles and applications of nanofluidic transport, Nature Nanotech., 4 (2009) 713.
  • 44. H. Daiguji, P. Yang, A. Majumdar, Ion transport in nanofluidic channels, Nano Lett., 4 (2004) 137-142.
  • 45. J.F. Pietschmann, M.T. Wolfram, M. Burger, C. Trautmann, G. Nguyen, M. Pevarnik, V. Bayer, Z. Siwy, Rectification properties of conically shaped nanopores: consequences of miniaturization, Phys. Chem. Chem. Phys., 15 (2013) 16917- 16926.
  • 46. I. Vlassiouk, S. Smirnov, Z. Siwy, Ionic selectivity of single nanochannels, Nano Lett., 8 (2008) 1978-1985.
  • 47. K.E. Venta, M.B. Zanjani, X. Ye, G. Danda, C.B. Murray, J.R. Lukes, M. Drndić, Gold nanorod translocations and charge measurement through solid-state nanopores., Nano Lett., 14 (2014) 5358-5364.
  • 48. K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel., Lab on a Chip., 12 (2012) 1332-1339.
  • 49. L. van Oeffelen, W. Van Roy, H. Idrissi, D. Charlier, L. Lagae, G. Borghs, Ion current rectification, limiting and overlimiting conductances in nanopores., PloS One., 10 (2015) e0124171.
  • 50. M. Chander, R. Kumar, S. Kumar, N. Kumar, S. Chakarvarti, Investigation of ionic transport through track-etched conical nanopores of PET membrane, Nano, 13 (2018) 1850011.
  • 51. J. Liu, M. Kvetny, J. Feng, D. Wang, B. Wu, W. Brown, G. Wang, Surface charge density determination of single conical nanopores based on normalized ion current rectification, Langmuir, 28 (2011) 1588-1595.
  • 52. R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Rectification of ionic current in a nanofluidic diode., Nano Lett., 7 (2007) 547-551.
  • 53. K. Zielinska, A. Gapeeva, O. Orelovich, P.Y. Apel, Diodelike properties of single-and multi-pore asymmetric track membranes, Nucl. Instrum. Meth. B, 326 (2014) 131-134.
  • 54. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.-O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532-535 (2003) 1061-1066.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Dürdane Yilmaz Bu kişi benim

Dila Kaya

Kaan Keçeci Bu kişi benim

Ali Dinler Bu kişi benim

Yayımlanma Tarihi 23 Ekim 2019
Kabul Tarihi 25 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 47 Sayı: 3

Kaynak Göster

APA Yilmaz, D., Kaya, D., Keçeci, K., Dinler, A. (2019). Ionic Current Rectification in Track-Etched Single Conical Nanopores. Hacettepe Journal of Biology and Chemistry, 47(3), 225-234. https://doi.org/10.15671/hjbc.626742
AMA Yilmaz D, Kaya D, Keçeci K, Dinler A. Ionic Current Rectification in Track-Etched Single Conical Nanopores. HJBC. Ekim 2019;47(3):225-234. doi:10.15671/hjbc.626742
Chicago Yilmaz, Dürdane, Dila Kaya, Kaan Keçeci, ve Ali Dinler. “Ionic Current Rectification in Track-Etched Single Conical Nanopores”. Hacettepe Journal of Biology and Chemistry 47, sy. 3 (Ekim 2019): 225-34. https://doi.org/10.15671/hjbc.626742.
EndNote Yilmaz D, Kaya D, Keçeci K, Dinler A (01 Ekim 2019) Ionic Current Rectification in Track-Etched Single Conical Nanopores. Hacettepe Journal of Biology and Chemistry 47 3 225–234.
IEEE D. Yilmaz, D. Kaya, K. Keçeci, ve A. Dinler, “Ionic Current Rectification in Track-Etched Single Conical Nanopores”, HJBC, c. 47, sy. 3, ss. 225–234, 2019, doi: 10.15671/hjbc.626742.
ISNAD Yilmaz, Dürdane vd. “Ionic Current Rectification in Track-Etched Single Conical Nanopores”. Hacettepe Journal of Biology and Chemistry 47/3 (Ekim 2019), 225-234. https://doi.org/10.15671/hjbc.626742.
JAMA Yilmaz D, Kaya D, Keçeci K, Dinler A. Ionic Current Rectification in Track-Etched Single Conical Nanopores. HJBC. 2019;47:225–234.
MLA Yilmaz, Dürdane vd. “Ionic Current Rectification in Track-Etched Single Conical Nanopores”. Hacettepe Journal of Biology and Chemistry, c. 47, sy. 3, 2019, ss. 225-34, doi:10.15671/hjbc.626742.
Vancouver Yilmaz D, Kaya D, Keçeci K, Dinler A. Ionic Current Rectification in Track-Etched Single Conical Nanopores. HJBC. 2019;47(3):225-34.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc