Well-defined
photocatalyst with 3D morphologies have attracted the attention of scientists
due to the more accessible reactive surfaces, easy to recover from reaction
medium, and low aggregation. Within this scope, photocatalysis based on
plasmonic metal-organic frameworks (MOFs) were synthesized and utilized as an
alternative reactive platform for visible-light degradation of methylene blue
(MB) under green LED irradiation for the first time. In order to reduce the
recombination between electron-hole pairs, a stable oxidant, namely sodium
persulfate (PS) was employed to accelerate the photocatalytic decolorization of
MB. These feasible strategies demonstrated that a bleaching degree of 91% (i.e., in the presence of PS) within 120
min was achieved compared to the bare Au@UiO-66@Pdop NPs (bleaching degree
31%). The obtained results from this study highlighted the superior properties
of the newly synthesized core-shell Au@UiO-66@Pdop photocatalysts and clearly
declared the great potential of the photo-responsive MOFs for organic pollutant
degradations as well.
This study was partially supported by Ankara Yildirim Beyazit University Scietific Research Unit
Project Number
Grant No. 4875 and 4736
Thanks
This study was partially supported by Ankara Yildirim Beyazit University Scietific Research Unit (Grant No. 4875 and 4736). I would like to thank Mustafa Yasir Aydin for his help with some of the measurements.
References
1. S. Cao, C.J. Wang, X.J. Lv, Y. Chen, W.F. Fu, A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation, Appl. Catal. B: Environ., 162 (2015) 381-391.
2. T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2, Appl. Catal. B: Environ., 178 (2015) 170-176.
3. K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers, Appl. Catal. B: Environ., 163(2015) 150-155.
4. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal–organic frameworks, Energy Environ. Sci., 7 (2014) 2831-2867.
5. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable metal–organic frameworks: design, synthesis, and applications, Adv. Mater., 30 (2018), 1704303.
6. C. Yu, S. Bourrelly, C. Martineau, F. Saidi, E. Bloch, H. Lavrard, F. Taulelle, P. Horcajada, C. Serre, P. L. Llewellyn, E. Magnier, T. Devic, Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior, Dalton Trans., 44 (2015) 19687-19692.
7. C. Wang, G.L. Guo, P. Wang, Synthesis, structure, and luminescent properties of three silver(I) complexes with organic carboxylic acid and 4,4′-bipyridine-like ligands, Transition Met. Chem., 38 (2013) 455-462.
8. C.Y. Sun, S.X. Liu, D.D. Liang, K.Z. Shao, Y.H. Ren, Z.M. Su, Highly stable crystalline catalysts based on a microporous metal−organic framework and polyoxometalates, J. Am. Chem. Soc., 131 (2009) 1883-1888.
9. J.R. Li, J. Sculley, H.C. Zhou, Metal–organic frameworks for separations, Chem. Rev., 112 (2011) 869-932.
10. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science, 300 (2003) 1127-1129.
11. A. R. Millward, O. M. Yaghi, Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127 (2005) 17998-17999.
12. C. Wang, P. Wang, L. Feng, Influence of organic carboxylic acids on self-assembly of silver(I) complexes containing 1,2-bis(4-pyridyl) ethane ligands, Transition Met. Chem., 37 (2012) 225-234.
13. C.G. Silva, A. Corma, H. Garcia, Metal–organic frameworks as semiconductors, J. Mater. Chem., 20 (2010) 3141-3156.
14. F.X. Llabrés i Xamena, A. Corma, H. Garcia, Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors, J. Phys. Chem. C, 111 (2007) 80-85.
15. M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.F. Yue, V.N. Nesterov, G. Qian, B. Chen, A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange, Chem. Commun., 47 (2011) 11715-11717.
16. Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant overmetal-organic framework MIL-53(Fe) under visible LED lightmediated by persulfate, Appl. Catal. B: Environ., 202 (2017) 165-174.
17. K. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu, Sp2 C-Dominant N-Doped Carbon Submicrometer Spheres with Tunable Size: A Versatile Platform for Highly Efficient Oxygen Reduction Catalysts, 25 (2013) 998-1003.
18. M. Zhao, C. Deng, X. Zhang, The design and synthesis of a hydrophilic core– shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research, Chem. Commun., 50 (2014) 6228-6231.
19. J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye, J. Hazard. Mater., 190 (2011) 945-951.
20. B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey, S.S. Dhar, Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue, Mater. Lett., 148 (2015) 37-40.
Year 2019,
Volume: 47 Issue: 4, 339 - 346, 01.12.2019
1. S. Cao, C.J. Wang, X.J. Lv, Y. Chen, W.F. Fu, A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation, Appl. Catal. B: Environ., 162 (2015) 381-391.
2. T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2, Appl. Catal. B: Environ., 178 (2015) 170-176.
3. K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers, Appl. Catal. B: Environ., 163(2015) 150-155.
4. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal–organic frameworks, Energy Environ. Sci., 7 (2014) 2831-2867.
5. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable metal–organic frameworks: design, synthesis, and applications, Adv. Mater., 30 (2018), 1704303.
6. C. Yu, S. Bourrelly, C. Martineau, F. Saidi, E. Bloch, H. Lavrard, F. Taulelle, P. Horcajada, C. Serre, P. L. Llewellyn, E. Magnier, T. Devic, Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior, Dalton Trans., 44 (2015) 19687-19692.
7. C. Wang, G.L. Guo, P. Wang, Synthesis, structure, and luminescent properties of three silver(I) complexes with organic carboxylic acid and 4,4′-bipyridine-like ligands, Transition Met. Chem., 38 (2013) 455-462.
8. C.Y. Sun, S.X. Liu, D.D. Liang, K.Z. Shao, Y.H. Ren, Z.M. Su, Highly stable crystalline catalysts based on a microporous metal−organic framework and polyoxometalates, J. Am. Chem. Soc., 131 (2009) 1883-1888.
9. J.R. Li, J. Sculley, H.C. Zhou, Metal–organic frameworks for separations, Chem. Rev., 112 (2011) 869-932.
10. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science, 300 (2003) 1127-1129.
11. A. R. Millward, O. M. Yaghi, Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127 (2005) 17998-17999.
12. C. Wang, P. Wang, L. Feng, Influence of organic carboxylic acids on self-assembly of silver(I) complexes containing 1,2-bis(4-pyridyl) ethane ligands, Transition Met. Chem., 37 (2012) 225-234.
13. C.G. Silva, A. Corma, H. Garcia, Metal–organic frameworks as semiconductors, J. Mater. Chem., 20 (2010) 3141-3156.
14. F.X. Llabrés i Xamena, A. Corma, H. Garcia, Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors, J. Phys. Chem. C, 111 (2007) 80-85.
15. M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.F. Yue, V.N. Nesterov, G. Qian, B. Chen, A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange, Chem. Commun., 47 (2011) 11715-11717.
16. Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant overmetal-organic framework MIL-53(Fe) under visible LED lightmediated by persulfate, Appl. Catal. B: Environ., 202 (2017) 165-174.
17. K. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu, Sp2 C-Dominant N-Doped Carbon Submicrometer Spheres with Tunable Size: A Versatile Platform for Highly Efficient Oxygen Reduction Catalysts, 25 (2013) 998-1003.
18. M. Zhao, C. Deng, X. Zhang, The design and synthesis of a hydrophilic core– shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research, Chem. Commun., 50 (2014) 6228-6231.
19. J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye, J. Hazard. Mater., 190 (2011) 945-951.
20. B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey, S.S. Dhar, Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue, Mater. Lett., 148 (2015) 37-40.
Salimi, K. (2019). Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. Hacettepe Journal of Biology and Chemistry, 47(4), 339-346. https://doi.org/10.15671/hjbc.618668
AMA
Salimi K. Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. HJBC. December 2019;47(4):339-346. doi:10.15671/hjbc.618668
Chicago
Salimi, Kouroush. “Plasmonic Zr-Based Metal-Organic Frameworks for Accelerated De-Colorization of Methylene Blue under LED Light Irradiation”. Hacettepe Journal of Biology and Chemistry 47, no. 4 (December 2019): 339-46. https://doi.org/10.15671/hjbc.618668.
EndNote
Salimi K (December 1, 2019) Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. Hacettepe Journal of Biology and Chemistry 47 4 339–346.
IEEE
K. Salimi, “Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation”, HJBC, vol. 47, no. 4, pp. 339–346, 2019, doi: 10.15671/hjbc.618668.
ISNAD
Salimi, Kouroush. “Plasmonic Zr-Based Metal-Organic Frameworks for Accelerated De-Colorization of Methylene Blue under LED Light Irradiation”. Hacettepe Journal of Biology and Chemistry 47/4 (December 2019), 339-346. https://doi.org/10.15671/hjbc.618668.
JAMA
Salimi K. Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. HJBC. 2019;47:339–346.
MLA
Salimi, Kouroush. “Plasmonic Zr-Based Metal-Organic Frameworks for Accelerated De-Colorization of Methylene Blue under LED Light Irradiation”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 4, 2019, pp. 339-46, doi:10.15671/hjbc.618668.
Vancouver
Salimi K. Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. HJBC. 2019;47(4):339-46.