Derleme
BibTex RIS Kaynak Göster
Yıl 2020, The 100 Year of Polymers, 447 - 457, 01.11.2020
https://doi.org/10.15671/hjbc.810490

Öz

Kaynakça

  • (1) H.Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell Publishing, Oxford, UK, 2006.
  • (2) H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH, Weinheim, Germany, 2003.
  • (3) E.Y. Bormashenko, Wetting of Real Surfaces, De Gruyter, Berlin, Germany, 2013.
  • (4) H.Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or 3-phase contact line: A review. Surf. Sci. Reports 69 (2014) 325-365.
  • (5) P. Roach, N.J. Shirtcliffe, M.I. Newton, Progress in superhydrophobic surface development. Soft Matter 4 (2008) 224–240.
  • (6) H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science 299 (2003) 1377-1380.
  • (7) C. Dorrer, J. Ruhe, Some thoughts on superhydrophobic wetting, Soft Matter 5 (2009) 51–61.
  • (8) W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1997) 1–8.
  • (9) R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21 (2005) 956–961.
  • (10) A.R. Parker, C.R. Lawrence, Water capture by a desert beetle. Nature 414 (2001) 33-34.
  • (11) X. Gao, L. Jiang, Water-repellent legs of water striders. Nature 432 (2004) 36.
  • (12) Q. Cong, G.H. Chen, Y. Fang, L.Q. Ren, Study on the super-hydrophobic characteristic of butterfly wing surface. J. Bionics Eng., 1 (2004) 249-252.
  • (13) T. Sun, L. Feng, X. Gao, L. Jiang, Bioinspired surfaces with special wettability. Acc. Chem. Res., 38 (2005) 644-652.
  • (14) X. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36 (2007) 1350–1368.
  • (15) M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Cur. Opinion Coll. & Inter. Sci. 14 (2009) 270–280.
  • (16) B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56 (2011) 1–108.
  • (17) T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, R.H. Ras, Mechanically durable superhydrophobic Surfaces. Adv. Mater. 23 (2011) 673–678.
  • (18) C.H. Xue, S.T. Jia, J. Zhang, J.Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci. Technol. Adv. Mater. 11 (2010) 033002.
  • (19) L. Wen, Y. Tian, L. Jiang, Bioinspired super-wettability from fundamental research to practical applications. Angew. Chem. Int. Ed. 54 (2015) 3387-3399.
  • (20) I.S. Bayer, On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 7 (2017) 12.
  • (21) K. Ellinas, A. Tserepi, E. Gogolides, Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Adv. Coll. Interf. Sci. 250 (2017) 132-157.
  • (22) J. Jeevahan, M. Chandrasekaran, B.G. Joseph, R.B. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15 (2018) 231–250.
  • (23) P. Nguyen-Tri, H.N. Tran, C.O. Plamondon, D.V.N. ⁠Vo, S. Nanda, A. Mishra, H.P. Chao, A.K. Bajpai, Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review, Prog. Org. Coatings 132 (2019) 235-256.
  • (24) T. Kong, G. Luo, Y. Zhao, Z. Liu, Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications, Adv. Funct. Mater. 29 (2019) 1808012.
  • (25) H.Y. Erbil, Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives, Langmuir 36 (2020) 2493-2509.
  • (26) G. McHale, D.L. Herbertson, S.J. Elliott, N.J. Shirtcliffe, M.I. Newton, Electrowetting of nonwetting liquids and liquid marbles, Langmuir 23 (2007) 918-924.
  • (27) S.H. Anastasiadis, Development of functional polymer surfaces with controlled wettability. Langmuir 29 (2013) 9277-9290.
  • (28) H.Y. Erbil, B. Hazer, Surface-free energy analysis of polystyrene-poly(- hydroxynonanoate) graft copolymers. J. App. Polym. Sci. 60 (1996) 1313-1320.
  • (29) A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376 (2000) 140-143.
  • (30) C.E. Cansoy, H.Y. Erbil, O. Akar, T. Akin, Effect of pattern size and geometry on the use of Cassie-Baxter equation for superhydrophobic surfaces. Col. Surf. A-Phy. Eng. Aspects 2011, 386, 116-124.
  • (31) A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 2 (2007) S126–S134.
  • (32) X. Tian, T. Verho, R.H.A. Ras, Moving superhydrophobic surfaces toward real-world applications. Science 352 (2016) 6282, 142-143.
  • (33) D3359-09, Standard Test Methods for Measuring Adhesion by Tape Test. 2013, ASTM 1–7.
  • (34) A. Steele, B.K. Nayak, A. Davis, M.C. Gupta, E. Loth, Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing. J. Micromec. Microeng. 23 (2013) 1-8.
  • (35) D4060-D968, Standard Test Methods for Abrasion Resistance of Organic Coatings by Falling Abrasive. 2005, ASTM Annu. Stand. 05 5–9.
  • (36) M. Paven, R. Fuchs, T. Yakabe, D. Vollmer, M. Kappl, A.N. Itakura, H.J. Butt, Mechanical Properties of Highly Porous Super Liquid-Repellent Surfaces. Adv. Funct. Mater. 26 (2016) 4914–4922.
  • (37) H. Wang, H. Zhou, A. Gestos, J. Fang, T. Lin, Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl. Mater. Interfaces 5 (2013) 10221–10226.
  • (38) Y. Xiu, Y. Liu, D.W. Hess, C.P. Wong, Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21 (2010) 155705.
  • (39) I.S. Bayer, A. Brown, A. Steele, E. Loth, Transforming anaerobic adhesives into highly durable and abrasion resistant superhydrophobic organoclay nanocomposite films: A new hybrid spray adhesive for tough superhydrophobicity. Appl. Phys. Express 2 (2009) 125003.
  • (40) T. Yanagisawa, A. Nakajima, M. Sakai, Y. Kameshima, K. Okada, Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder. Mater. Sci. Eng. B 161 (2009) 36-39.
  • (41) J. Bico, C. Marzolin, D. Quere, Pearl drops. Europhys. Lett. 47 (1999) 220-226.
  • (42) Y. Jung, B. Bhushan, Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3 (2009) 4155-4163.
  • (43) Z. Cui, Q. Wang, Y. Xiao, C. Su, Q. Chen, Q. The stability of superhydrophobic surfaces tested by high speed current scouring. Appl. Surf. Sci. 254 (2008) 2911-2916.
  • (44) V. Mortazavi, M.M. Khonsari, On the degradation of superhydrophobic surfaces: A review. Wear 372-373 (2017) 145-157.
  • (45) R.J.L. Scarratt, U. Steiner, C. Netoa, A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Coll. Interf. Sci. 246 (2017) 133–152.
  • (46) R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21 (2005) 956–961.
  • (47) U. Cengiz, H.Y. Erbil, Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a non-solvent. App. Surf. Sci. 292 (2014) 591-597.
  • (48) A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16 (2000) 7044-7047.
  • (49) B. Bhushan, Y. Jung, K. Koch, Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25 (2009) 3240-3248.
  • (50) N. Yoshida, M. Takeuchi, T. Okura, H. Monma, M. Wakamura, H. Ohsaki, T. Watanabe, Super-hydrophobic photocatalytic coatings utilizing apatite-based photocatalyst. Thin Solid Films 502 (2006, 502) 108-111.
  • (51) K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol−Gel Method. Chem. Mater. 12 (2000) 3, 590-592.
  • (52) G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys., 25 (1908) 377-388.
  • (53) A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater., 11 (1999) 1365-1368.
  • (54) H. Yabu, M. Shimomura, Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17 (2005) 5231-5234.
  • (55) Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, B. Yang, Biomimetic Surfaces for High-Performance Optics, Adv. Mater. 21 (2009) 4731–4734.
  • (56) Y. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D.W. Hess, C.P. Wong, Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 24 (2008) 10421-10426.
  • (57) S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, U. Steiner, Self-cleaning antireflective optical coatings, Nano Lett. 13 (2013) 5329-5335.
  • (58) L. Yao, J. He, Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces. Prog. Mater. Sci. 61 (2014) 94-143.
  • (59) E. Kasapgil, E.G. Atici, R. Cicek, I. Anac, H.Y. Erbil, Superhydrophobic polysiloxane filament growth on non-activated polymer coatings. RSC Advan. 6 (2016) 74921-74928.
  • (60) E. Kasapgil, I. Anac, H.Y. Erbil, Transparent, fluorine-free, heat-resistant, water repellent coating by infusing slippery silicone oil on polysiloxane nanofilament layers prepared by gas phase reaction of n-propyltrichlorosilane and methyltrichlorosilane. Coll. Surf. A: Physicochem. Eng. Aspects. 560 (2019) 223-232.
  • (61) J. Lv, Y. Song, L. Jiang, J. Wang, Bio-inspired strategies for anti-icing. ACS Nano 8 (2014) 3152-3169.
  • (62) T.M. Schutzius, S. Jung, T. Maitra, P. Eberle, C. Antonini, C. Stamatopoulos, D. Poulikakos, Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31 (2015) 4807-4821.
  • (63) M.J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of anti-icing surfaces: smooth, textured or slippery? Nature Rev. Mater. 1 (2016) 15003.
  • (64) L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25 (2009) 12444-12448.
  • (65) M. He, J. Wang, H. Li, Y. Song, Superhydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7 (2011) 3993-4000.
  • (66) P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, L. Jiang, Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24 (2012) 2642-2648.
  • (67) A.J. Meuler, G.H. McKinley, R.E. Cohen, Exploiting topographical texture to impart icephobicity. ACS Nano 4 (2010) 7048-7052.
  • (68) S. Jung, M. Dorrestijn, D. Raps, A. Das, C.M. Megaridis, D. Poulikakos, Are superhydrophobic surfaces best for icephobicity? Langmuir 27 (2011) 3059-3066.
  • (69) K.K. Varanasi, T. Deng, J.D. Smith, M. Hsu, N. Bhate, Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97 (2010) 234102.
  • (70) S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257 (2011) 6264-6269.
  • (71) S.A. Kulinich, S. Farhadi, K. Nose, X.W. Du, Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27 (2011) 25-29. (72) J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang, Y. Song, Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 101 (2012) 111603.
  • (73) M. Nosonovsky, V. Hejazi, Why superhydrophobic surfaces are not always icephobic. ACS Nano 6 (2012) 8488-8491.
  • (74) L. Oberli, D. Caruso, C. Hall, M. Fabretto, P.J. Murphy, D. Evans, Condensation and freezing of droplets on superhydrophobic surfaces. Adv. Coll. Interf. Sci. 210 (2014) 47-57.
  • (75) S. Ozbay, C. Yuceel, H.Y. Erbil, Improved icephobic properties on surfaces with a hydrophilic self-lubricating liquid. ACS App. Mater. Interf. 7 (2015) 22067−22077.
  • (76) S. Ozbay, H.Y. Erbil, Ice accretion by spraying supercooled droplets is not dependent on wettability and surface free energy of substrates. Coll. Surf. A: Physicochem. Eng. Aspects. 504 (2016) 210-218.
  • (77) Y. Lin, H. Chen, G. Wang, A. Liu, Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 8 (2018) 208.
  • (78) R.D. Narhe, D.A. Beysens, Nucleation and Growth on a Superhydrophobic Grooved Surface. Phys. Rev. Lett. 93 (2004) 076103.
  • (79) K. Koch, B. Bhushan, H.J. Ensikat, W. Barthlott, Self-healing of voids in the wax coating on plant surfaces. Phil. Trans. R. Soc. A 367 (2009) 1673-1688.
  • (80) D. Shchukin, H. Möhwald, Self-repairing coatings containing active nanoreservoirs. Small 3 (2007) 926-943.
  • (81) J.P. Youngblood, N.R. Sottos, C. Extrand, Bioinspired materials for self-cleaning and self-healing. MRS Bull. 33 (2008) 732-738.
  • (82) M. Nosonovsky, B. Bhushan, Surface self-organization: from wear to self-healing in biological and technical surfaces. Appl. Surf. Sci. 256 (2010) 3982-3987.
  • (83) R.P. Wool, Self-healing materials: a review. Soft Matter 4 (2008) 400-418.
  • (84) A. Das, J. Deka, K. Raidongia, U. Manna, Robust and self-healable bulk-superhydro-phobic polymeric coating. Chem. Mater. 29 (2017) 8720-8728.
  • (85) C. Esteves, Self-healing functional surfaces. Adv. Mater. Interf. 5 (2018) 1800293.
  • (86) Y. Li, L. Li, J. Sun, Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49 (2010) 6129-6133.
  • (87) K. Golovin, M. Boban, J.M. Mabry, A. Tuteja, Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interf. 9 (2017) 11212−11223.
  • (88) M. Liu, Y. Hou, J. Li, L. Tie, Y. Peng, Z. Guo, Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. J. Mater. Chem. A, 5 (2017) 19297-19305.

Industrial applications of superhydrophobic coatings: Challenges and prospects

Yıl 2020, The 100 Year of Polymers, 447 - 457, 01.11.2020
https://doi.org/10.15671/hjbc.810490

Öz

The use of the superhydrophobic coatings and materials in industry is not satisfactory after the intensive activity in research laboratories in the last two decades. We discussed the reasons for this adverse situation under several topics in this review article. The most important issues are the insufficient mechanical resistance and inevitable contamination of the SH surfaces under outdoor conditions, resulting in short useful life-time. The fabrication of a SH surface requires a rough structure with tiny textures on it and this frail framework has a poor mechanical resistance. The topics of superfluous production of small scale and expensive SH surfaces, the difficulty to obtain transparent and also self-healing SH surfaces, the inefficient anti-icing applications of the SH coatings are also discussed.

Kaynakça

  • (1) H.Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell Publishing, Oxford, UK, 2006.
  • (2) H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH, Weinheim, Germany, 2003.
  • (3) E.Y. Bormashenko, Wetting of Real Surfaces, De Gruyter, Berlin, Germany, 2013.
  • (4) H.Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or 3-phase contact line: A review. Surf. Sci. Reports 69 (2014) 325-365.
  • (5) P. Roach, N.J. Shirtcliffe, M.I. Newton, Progress in superhydrophobic surface development. Soft Matter 4 (2008) 224–240.
  • (6) H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science 299 (2003) 1377-1380.
  • (7) C. Dorrer, J. Ruhe, Some thoughts on superhydrophobic wetting, Soft Matter 5 (2009) 51–61.
  • (8) W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1997) 1–8.
  • (9) R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21 (2005) 956–961.
  • (10) A.R. Parker, C.R. Lawrence, Water capture by a desert beetle. Nature 414 (2001) 33-34.
  • (11) X. Gao, L. Jiang, Water-repellent legs of water striders. Nature 432 (2004) 36.
  • (12) Q. Cong, G.H. Chen, Y. Fang, L.Q. Ren, Study on the super-hydrophobic characteristic of butterfly wing surface. J. Bionics Eng., 1 (2004) 249-252.
  • (13) T. Sun, L. Feng, X. Gao, L. Jiang, Bioinspired surfaces with special wettability. Acc. Chem. Res., 38 (2005) 644-652.
  • (14) X. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36 (2007) 1350–1368.
  • (15) M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Cur. Opinion Coll. & Inter. Sci. 14 (2009) 270–280.
  • (16) B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56 (2011) 1–108.
  • (17) T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, R.H. Ras, Mechanically durable superhydrophobic Surfaces. Adv. Mater. 23 (2011) 673–678.
  • (18) C.H. Xue, S.T. Jia, J. Zhang, J.Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci. Technol. Adv. Mater. 11 (2010) 033002.
  • (19) L. Wen, Y. Tian, L. Jiang, Bioinspired super-wettability from fundamental research to practical applications. Angew. Chem. Int. Ed. 54 (2015) 3387-3399.
  • (20) I.S. Bayer, On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 7 (2017) 12.
  • (21) K. Ellinas, A. Tserepi, E. Gogolides, Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Adv. Coll. Interf. Sci. 250 (2017) 132-157.
  • (22) J. Jeevahan, M. Chandrasekaran, B.G. Joseph, R.B. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15 (2018) 231–250.
  • (23) P. Nguyen-Tri, H.N. Tran, C.O. Plamondon, D.V.N. ⁠Vo, S. Nanda, A. Mishra, H.P. Chao, A.K. Bajpai, Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review, Prog. Org. Coatings 132 (2019) 235-256.
  • (24) T. Kong, G. Luo, Y. Zhao, Z. Liu, Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications, Adv. Funct. Mater. 29 (2019) 1808012.
  • (25) H.Y. Erbil, Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives, Langmuir 36 (2020) 2493-2509.
  • (26) G. McHale, D.L. Herbertson, S.J. Elliott, N.J. Shirtcliffe, M.I. Newton, Electrowetting of nonwetting liquids and liquid marbles, Langmuir 23 (2007) 918-924.
  • (27) S.H. Anastasiadis, Development of functional polymer surfaces with controlled wettability. Langmuir 29 (2013) 9277-9290.
  • (28) H.Y. Erbil, B. Hazer, Surface-free energy analysis of polystyrene-poly(- hydroxynonanoate) graft copolymers. J. App. Polym. Sci. 60 (1996) 1313-1320.
  • (29) A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376 (2000) 140-143.
  • (30) C.E. Cansoy, H.Y. Erbil, O. Akar, T. Akin, Effect of pattern size and geometry on the use of Cassie-Baxter equation for superhydrophobic surfaces. Col. Surf. A-Phy. Eng. Aspects 2011, 386, 116-124.
  • (31) A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 2 (2007) S126–S134.
  • (32) X. Tian, T. Verho, R.H.A. Ras, Moving superhydrophobic surfaces toward real-world applications. Science 352 (2016) 6282, 142-143.
  • (33) D3359-09, Standard Test Methods for Measuring Adhesion by Tape Test. 2013, ASTM 1–7.
  • (34) A. Steele, B.K. Nayak, A. Davis, M.C. Gupta, E. Loth, Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing. J. Micromec. Microeng. 23 (2013) 1-8.
  • (35) D4060-D968, Standard Test Methods for Abrasion Resistance of Organic Coatings by Falling Abrasive. 2005, ASTM Annu. Stand. 05 5–9.
  • (36) M. Paven, R. Fuchs, T. Yakabe, D. Vollmer, M. Kappl, A.N. Itakura, H.J. Butt, Mechanical Properties of Highly Porous Super Liquid-Repellent Surfaces. Adv. Funct. Mater. 26 (2016) 4914–4922.
  • (37) H. Wang, H. Zhou, A. Gestos, J. Fang, T. Lin, Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl. Mater. Interfaces 5 (2013) 10221–10226.
  • (38) Y. Xiu, Y. Liu, D.W. Hess, C.P. Wong, Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21 (2010) 155705.
  • (39) I.S. Bayer, A. Brown, A. Steele, E. Loth, Transforming anaerobic adhesives into highly durable and abrasion resistant superhydrophobic organoclay nanocomposite films: A new hybrid spray adhesive for tough superhydrophobicity. Appl. Phys. Express 2 (2009) 125003.
  • (40) T. Yanagisawa, A. Nakajima, M. Sakai, Y. Kameshima, K. Okada, Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder. Mater. Sci. Eng. B 161 (2009) 36-39.
  • (41) J. Bico, C. Marzolin, D. Quere, Pearl drops. Europhys. Lett. 47 (1999) 220-226.
  • (42) Y. Jung, B. Bhushan, Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3 (2009) 4155-4163.
  • (43) Z. Cui, Q. Wang, Y. Xiao, C. Su, Q. Chen, Q. The stability of superhydrophobic surfaces tested by high speed current scouring. Appl. Surf. Sci. 254 (2008) 2911-2916.
  • (44) V. Mortazavi, M.M. Khonsari, On the degradation of superhydrophobic surfaces: A review. Wear 372-373 (2017) 145-157.
  • (45) R.J.L. Scarratt, U. Steiner, C. Netoa, A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Coll. Interf. Sci. 246 (2017) 133–152.
  • (46) R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21 (2005) 956–961.
  • (47) U. Cengiz, H.Y. Erbil, Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a non-solvent. App. Surf. Sci. 292 (2014) 591-597.
  • (48) A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16 (2000) 7044-7047.
  • (49) B. Bhushan, Y. Jung, K. Koch, Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25 (2009) 3240-3248.
  • (50) N. Yoshida, M. Takeuchi, T. Okura, H. Monma, M. Wakamura, H. Ohsaki, T. Watanabe, Super-hydrophobic photocatalytic coatings utilizing apatite-based photocatalyst. Thin Solid Films 502 (2006, 502) 108-111.
  • (51) K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol−Gel Method. Chem. Mater. 12 (2000) 3, 590-592.
  • (52) G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys., 25 (1908) 377-388.
  • (53) A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater., 11 (1999) 1365-1368.
  • (54) H. Yabu, M. Shimomura, Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17 (2005) 5231-5234.
  • (55) Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, B. Yang, Biomimetic Surfaces for High-Performance Optics, Adv. Mater. 21 (2009) 4731–4734.
  • (56) Y. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D.W. Hess, C.P. Wong, Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 24 (2008) 10421-10426.
  • (57) S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, U. Steiner, Self-cleaning antireflective optical coatings, Nano Lett. 13 (2013) 5329-5335.
  • (58) L. Yao, J. He, Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces. Prog. Mater. Sci. 61 (2014) 94-143.
  • (59) E. Kasapgil, E.G. Atici, R. Cicek, I. Anac, H.Y. Erbil, Superhydrophobic polysiloxane filament growth on non-activated polymer coatings. RSC Advan. 6 (2016) 74921-74928.
  • (60) E. Kasapgil, I. Anac, H.Y. Erbil, Transparent, fluorine-free, heat-resistant, water repellent coating by infusing slippery silicone oil on polysiloxane nanofilament layers prepared by gas phase reaction of n-propyltrichlorosilane and methyltrichlorosilane. Coll. Surf. A: Physicochem. Eng. Aspects. 560 (2019) 223-232.
  • (61) J. Lv, Y. Song, L. Jiang, J. Wang, Bio-inspired strategies for anti-icing. ACS Nano 8 (2014) 3152-3169.
  • (62) T.M. Schutzius, S. Jung, T. Maitra, P. Eberle, C. Antonini, C. Stamatopoulos, D. Poulikakos, Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31 (2015) 4807-4821.
  • (63) M.J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Design of anti-icing surfaces: smooth, textured or slippery? Nature Rev. Mater. 1 (2016) 15003.
  • (64) L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25 (2009) 12444-12448.
  • (65) M. He, J. Wang, H. Li, Y. Song, Superhydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7 (2011) 3993-4000.
  • (66) P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, L. Jiang, Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24 (2012) 2642-2648.
  • (67) A.J. Meuler, G.H. McKinley, R.E. Cohen, Exploiting topographical texture to impart icephobicity. ACS Nano 4 (2010) 7048-7052.
  • (68) S. Jung, M. Dorrestijn, D. Raps, A. Das, C.M. Megaridis, D. Poulikakos, Are superhydrophobic surfaces best for icephobicity? Langmuir 27 (2011) 3059-3066.
  • (69) K.K. Varanasi, T. Deng, J.D. Smith, M. Hsu, N. Bhate, Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97 (2010) 234102.
  • (70) S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257 (2011) 6264-6269.
  • (71) S.A. Kulinich, S. Farhadi, K. Nose, X.W. Du, Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27 (2011) 25-29. (72) J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang, Y. Song, Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 101 (2012) 111603.
  • (73) M. Nosonovsky, V. Hejazi, Why superhydrophobic surfaces are not always icephobic. ACS Nano 6 (2012) 8488-8491.
  • (74) L. Oberli, D. Caruso, C. Hall, M. Fabretto, P.J. Murphy, D. Evans, Condensation and freezing of droplets on superhydrophobic surfaces. Adv. Coll. Interf. Sci. 210 (2014) 47-57.
  • (75) S. Ozbay, C. Yuceel, H.Y. Erbil, Improved icephobic properties on surfaces with a hydrophilic self-lubricating liquid. ACS App. Mater. Interf. 7 (2015) 22067−22077.
  • (76) S. Ozbay, H.Y. Erbil, Ice accretion by spraying supercooled droplets is not dependent on wettability and surface free energy of substrates. Coll. Surf. A: Physicochem. Eng. Aspects. 504 (2016) 210-218.
  • (77) Y. Lin, H. Chen, G. Wang, A. Liu, Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 8 (2018) 208.
  • (78) R.D. Narhe, D.A. Beysens, Nucleation and Growth on a Superhydrophobic Grooved Surface. Phys. Rev. Lett. 93 (2004) 076103.
  • (79) K. Koch, B. Bhushan, H.J. Ensikat, W. Barthlott, Self-healing of voids in the wax coating on plant surfaces. Phil. Trans. R. Soc. A 367 (2009) 1673-1688.
  • (80) D. Shchukin, H. Möhwald, Self-repairing coatings containing active nanoreservoirs. Small 3 (2007) 926-943.
  • (81) J.P. Youngblood, N.R. Sottos, C. Extrand, Bioinspired materials for self-cleaning and self-healing. MRS Bull. 33 (2008) 732-738.
  • (82) M. Nosonovsky, B. Bhushan, Surface self-organization: from wear to self-healing in biological and technical surfaces. Appl. Surf. Sci. 256 (2010) 3982-3987.
  • (83) R.P. Wool, Self-healing materials: a review. Soft Matter 4 (2008) 400-418.
  • (84) A. Das, J. Deka, K. Raidongia, U. Manna, Robust and self-healable bulk-superhydro-phobic polymeric coating. Chem. Mater. 29 (2017) 8720-8728.
  • (85) C. Esteves, Self-healing functional surfaces. Adv. Mater. Interf. 5 (2018) 1800293.
  • (86) Y. Li, L. Li, J. Sun, Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49 (2010) 6129-6133.
  • (87) K. Golovin, M. Boban, J.M. Mabry, A. Tuteja, Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interf. 9 (2017) 11212−11223.
  • (88) M. Liu, Y. Hou, J. Li, L. Tie, Y. Peng, Z. Guo, Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. J. Mater. Chem. A, 5 (2017) 19297-19305.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Husnu Yıldırım Erbıl 0000-0001-9204-3806

Yayımlanma Tarihi 1 Kasım 2020
Kabul Tarihi 15 Ekim 2020
Yayımlandığı Sayı Yıl 2020 The 100 Year of Polymers

Kaynak Göster

APA Erbıl, H. Y. (2020). Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry, 48(5), 447-457. https://doi.org/10.15671/hjbc.810490
AMA Erbıl HY. Industrial applications of superhydrophobic coatings: Challenges and prospects. HJBC. Kasım 2020;48(5):447-457. doi:10.15671/hjbc.810490
Chicago Erbıl, Husnu Yıldırım. “Industrial Applications of Superhydrophobic Coatings: Challenges and Prospects”. Hacettepe Journal of Biology and Chemistry 48, sy. 5 (Kasım 2020): 447-57. https://doi.org/10.15671/hjbc.810490.
EndNote Erbıl HY (01 Kasım 2020) Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry 48 5 447–457.
IEEE H. Y. Erbıl, “Industrial applications of superhydrophobic coatings: Challenges and prospects”, HJBC, c. 48, sy. 5, ss. 447–457, 2020, doi: 10.15671/hjbc.810490.
ISNAD Erbıl, Husnu Yıldırım. “Industrial Applications of Superhydrophobic Coatings: Challenges and Prospects”. Hacettepe Journal of Biology and Chemistry 48/5 (Kasım 2020), 447-457. https://doi.org/10.15671/hjbc.810490.
JAMA Erbıl HY. Industrial applications of superhydrophobic coatings: Challenges and prospects. HJBC. 2020;48:447–457.
MLA Erbıl, Husnu Yıldırım. “Industrial Applications of Superhydrophobic Coatings: Challenges and Prospects”. Hacettepe Journal of Biology and Chemistry, c. 48, sy. 5, 2020, ss. 447-5, doi:10.15671/hjbc.810490.
Vancouver Erbıl HY. Industrial applications of superhydrophobic coatings: Challenges and prospects. HJBC. 2020;48(5):447-5.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc