BibTex RIS Kaynak Göster

Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles

Yıl 2010, Cilt: 38 Sayı: 1, 27 - 39, 01.01.2010

Öz

Molecular imprinting is a form of template polymerization which has been used to produce artificial binding sites in porous polymer particles that exhibit selective rebinding of the imprint or template molecules used in the fabrication. In this study, thermosensitive ion- imprinted polymers TIIP were prepared for selective preconcentration of Fe3+ ions. Langmuir and Freundlich adsorption models for TIIP were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fit very well to the Langmuir model in the entire concentration range 5-40 mg/L . Furthermore, the selective adsorption of Fe3+ ions was confirmed by comparing the adsorption amount of other metal ions, Al3+, Zn2+, Co2+, Cu2+ and Mn2+.

Kaynakça

  • Bartsch, R.A., Maeda, M. Eds. Molecular and ionic recognition with imprinted polymers. Washington DC: ACS Symposium Series 703; American Chemical Society, 1998.
  • Wulff, G., Molecular imprinting in crosslinked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34, 1812, 1995.
  • Shea, K.J., Molecular imprinting of synthetic network polymers: The de novo synthesis of macromolecular binding and catalytic sites. Trends Polym. Sci., 2, 166, 1994.
  • Mayes, A.G., Mosbach, K., Molecularly imprinted polymers: useful materials for analytical chemistry. Trends Anal. Chem., 16, 321, 1997.
  • Sellergen, B., Noncovalent molecular imprinting: antibody- like molecular recognition in polymeric network materials. Trends Anal. Chem., 16, 310, 1997.
  • Steinke, J., Sherrington, D., Dunkin, I., Imprinting of synthetic polymers using molecular templates. Adv. Polym. Sci.,123, 81, 1995.
  • Langer, R., Peppas, N.A., Advances in Biomaterials, Drug Delivery, and Bionanotechnology. AIChE Journal. 49, 2990, 2003.
  • Piletsky, S.A., Alcock, S., Turner, A.P.F., Molecular imprinting: at the edge of the third millennium. Trends Biotechnol., 19, 9, 2001.
  • Wizeman, W., Kofinas, P., Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding, Biomaterials, 22, 1485, 2001.
  • Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates - A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl., 34, 1812, 1995.
  • Say, R., Birlik, E., Ersöz, A., Yılmaz, F., Gedikbey, T., Denizli, A., Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim Acta, 480, 251, 2003.
  • Birlik, E., Ersöz, A., Denizli, A., Say, R., Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta, 565, 145, 2006.
  • Mosbach, K., Ramstrom, O., The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology, 14, 163, 1996.
  • Sellergen, B., Noncovalent molecular imprinting: antibody- like molecular recognition in polymeric network materials, Trends Anal. Chem., 16, 310, 1997.
  • Withcombe, M.J., Rodriquez, M.E., Villar, P., Vulfson, E.N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 117, 7105, 1995.
  • Kirsch, N.C., Alexander., Lubke M., Withcombe, M.J., Vulfson, E.N., Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites. Polymer, 41, 5583, 2000.
  • Ansell, R.J., Mosbach, K., Molecularly imprinted polymers: new tools for biomedical science. Pharma. News, 3, 16, 1996.
  • Withcombe, M.J., Vulfson, E.N., Imprinted polymers, Adv. Mater., 13, 467, 2001.
  • Karabörk, M., Ersöz, A., Denizli, A., Say, R., Polymer−clay nanocomposite iron traps based on intersurface ion- imprinting, Ind. Eng. Chem. Res., 47, 2258, 2008.
  • Mosbach, K., Haupt, K., Some new developments and challenges in non-covalent molecular imprinting technology, J. Mol. Recognit., 11, 62, 1998.
  • Oya, T., Enoki, T., Grosberg, A.Y., Masamune S., Sakiyama, T., Takeoka, Y., Tanaka, K., Wang, G.Q., Yılmaz Y., Feld, M.S., Dasari, R., Tanak, T., Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science, 286, 1543, 1999.
  • Katono, H., Sanui, K., Ogata, N., Okano, T., Sakurai, Y., Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co- butyl methacrylate) and poly(acrylic acid). Polym. J., 23, 1179, 1991.
  • Ito, S., Phase transition of aqueous solution of poly(n- alkylacrylamide) derivatives aa effects of side chain structure aa, Kobunshi Ronbunshu, 46(7), 437, 1989.
  • Tokuyama, H., Kanazawa, R., Sakohara, S., Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents, Sep. Purif. Tech., 44, 152, 2005.
  • Ito, K., Chuang, J., Alvarez-Lorenzo, C., Watanabe, T., Ando, N., Grosberg, A.Y., Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: Experiment and theory, Prog. Polym.Sci., 28, 1489, 2003.
  • Güney, O., Multiple-point adsorption of terbium ions by lead ion templated thermosensitive gel: elucidating recognition of conformation in gel by terbium probe, J. Mol. Recognit., 16, 67, 2003.
  • Morris, G.E., Vincent, B., Snowden, M.J., Adsorption of lead ions onto n-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198, 1997.
  • Uğuzdoğan, E., Kayı, H., Denkbaş, E.B., Patır, S., Tuncel, A., Stimuli-responsive properties of aminophenylboronic acid carrying thermosensitive copolymers. Polym. Int., 52, 649, 2003.
  • Tokuyama, H., Yanagawa, K., Sakohara, S., Temperature swing adsorption of heavy metals on novel phosphate-type adsorbents using thermosensitive gels and/or polymers, Sep. Purif. Technol., 50, 8, 2006.
  • Zhang, J., Peppas N.A., Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/ poly(n-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules, 33, 102, 2000.
  • Say, R., Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods, Anal Chim. Acta, 579(1, 2), 74, 2006.
  • Kuchen, W., Schram, J., Metal-ion-selective exchange resins by matrix imprint with methacrylates, Angew. Chem. Int. Ed. Engl., 27, 1695, 1988.
  • Dai, S., Burleigh, M.C., Shin, Y., Morrdw, C.C., Barnes, C.E., Imprint coating: A novel synthesis of selective functionalized ordered mesoporous sorbents, Angew. Chem. Int. Ed., 38(9), 1235, 1999.
  • Kanazawa, R., Yoshida, T., Gotoh, T., Sakohara, S., Preparation of molecular imprinted thermosensitive gel adsorbents and adsorption/desorption properties of heavy metal ions by temperature swing. J. Chem. Eng. Jpn., 37, 59, 2004.
  • Kesenci, K., Say, R., Denizli, A., Removal of heavy metal ions from water by using poly(ethyleneglycol dimeth- acrylate-co-acrylamide) beads, Eur. Polym. J., 38(7), 1443, 2002.
  • Denizli, A., Garipcan, B., Karabakan, A., Say, R., Emir, S., Patır, S., Metal-complexing ligand methacryloylamido- cysteine containing polymer beads for Cd(II) removal, Sep. Purif. Technol., 30(1), 3, 2003.
  • Denizli, A., Salih, B., Pişkin, E., New sorbents for removal of heavy metal ions: diamine-glow-discharge treated polyhydroxyethyl methacrylate microspheres, J. Chromatogr. A, 773(1-2), 169, 1997.
  • Jaganathan, J., Ewing K.J., Aggarwal, I., Determination of iron, cobalt, nickel and copper in a zirconium-based glass by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 1287, 1992.
  • Soares, M.E., Bastos, M.L., Ferreira, M.A., Determination of copper, iron, aluminium, lead and cadmium in cork stoppers by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 8, 655, 1993.
  • Pourreza, N., Hoveizavi, R., Simultaneous precon- centration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination, Anal. Chim. Acta, 549, 124, 2005.
  • Satake, M., Nagahiro T., Puri, B.K., Column
  • preconcentration of iron(III) with an ion pair of 1,2- dihydroxybenzene-3,5-disulfonate and benzyldimethyltetra- decylammonium ion supported on naphthalene using flame atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 183, 1992.
Yıl 2010, Cilt: 38 Sayı: 1, 27 - 39, 01.01.2010

Öz

Kaynakça

  • Bartsch, R.A., Maeda, M. Eds. Molecular and ionic recognition with imprinted polymers. Washington DC: ACS Symposium Series 703; American Chemical Society, 1998.
  • Wulff, G., Molecular imprinting in crosslinked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34, 1812, 1995.
  • Shea, K.J., Molecular imprinting of synthetic network polymers: The de novo synthesis of macromolecular binding and catalytic sites. Trends Polym. Sci., 2, 166, 1994.
  • Mayes, A.G., Mosbach, K., Molecularly imprinted polymers: useful materials for analytical chemistry. Trends Anal. Chem., 16, 321, 1997.
  • Sellergen, B., Noncovalent molecular imprinting: antibody- like molecular recognition in polymeric network materials. Trends Anal. Chem., 16, 310, 1997.
  • Steinke, J., Sherrington, D., Dunkin, I., Imprinting of synthetic polymers using molecular templates. Adv. Polym. Sci.,123, 81, 1995.
  • Langer, R., Peppas, N.A., Advances in Biomaterials, Drug Delivery, and Bionanotechnology. AIChE Journal. 49, 2990, 2003.
  • Piletsky, S.A., Alcock, S., Turner, A.P.F., Molecular imprinting: at the edge of the third millennium. Trends Biotechnol., 19, 9, 2001.
  • Wizeman, W., Kofinas, P., Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding, Biomaterials, 22, 1485, 2001.
  • Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates - A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl., 34, 1812, 1995.
  • Say, R., Birlik, E., Ersöz, A., Yılmaz, F., Gedikbey, T., Denizli, A., Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim Acta, 480, 251, 2003.
  • Birlik, E., Ersöz, A., Denizli, A., Say, R., Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta, 565, 145, 2006.
  • Mosbach, K., Ramstrom, O., The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology, 14, 163, 1996.
  • Sellergen, B., Noncovalent molecular imprinting: antibody- like molecular recognition in polymeric network materials, Trends Anal. Chem., 16, 310, 1997.
  • Withcombe, M.J., Rodriquez, M.E., Villar, P., Vulfson, E.N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 117, 7105, 1995.
  • Kirsch, N.C., Alexander., Lubke M., Withcombe, M.J., Vulfson, E.N., Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites. Polymer, 41, 5583, 2000.
  • Ansell, R.J., Mosbach, K., Molecularly imprinted polymers: new tools for biomedical science. Pharma. News, 3, 16, 1996.
  • Withcombe, M.J., Vulfson, E.N., Imprinted polymers, Adv. Mater., 13, 467, 2001.
  • Karabörk, M., Ersöz, A., Denizli, A., Say, R., Polymer−clay nanocomposite iron traps based on intersurface ion- imprinting, Ind. Eng. Chem. Res., 47, 2258, 2008.
  • Mosbach, K., Haupt, K., Some new developments and challenges in non-covalent molecular imprinting technology, J. Mol. Recognit., 11, 62, 1998.
  • Oya, T., Enoki, T., Grosberg, A.Y., Masamune S., Sakiyama, T., Takeoka, Y., Tanaka, K., Wang, G.Q., Yılmaz Y., Feld, M.S., Dasari, R., Tanak, T., Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science, 286, 1543, 1999.
  • Katono, H., Sanui, K., Ogata, N., Okano, T., Sakurai, Y., Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co- butyl methacrylate) and poly(acrylic acid). Polym. J., 23, 1179, 1991.
  • Ito, S., Phase transition of aqueous solution of poly(n- alkylacrylamide) derivatives aa effects of side chain structure aa, Kobunshi Ronbunshu, 46(7), 437, 1989.
  • Tokuyama, H., Kanazawa, R., Sakohara, S., Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents, Sep. Purif. Tech., 44, 152, 2005.
  • Ito, K., Chuang, J., Alvarez-Lorenzo, C., Watanabe, T., Ando, N., Grosberg, A.Y., Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: Experiment and theory, Prog. Polym.Sci., 28, 1489, 2003.
  • Güney, O., Multiple-point adsorption of terbium ions by lead ion templated thermosensitive gel: elucidating recognition of conformation in gel by terbium probe, J. Mol. Recognit., 16, 67, 2003.
  • Morris, G.E., Vincent, B., Snowden, M.J., Adsorption of lead ions onto n-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198, 1997.
  • Uğuzdoğan, E., Kayı, H., Denkbaş, E.B., Patır, S., Tuncel, A., Stimuli-responsive properties of aminophenylboronic acid carrying thermosensitive copolymers. Polym. Int., 52, 649, 2003.
  • Tokuyama, H., Yanagawa, K., Sakohara, S., Temperature swing adsorption of heavy metals on novel phosphate-type adsorbents using thermosensitive gels and/or polymers, Sep. Purif. Technol., 50, 8, 2006.
  • Zhang, J., Peppas N.A., Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/ poly(n-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules, 33, 102, 2000.
  • Say, R., Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods, Anal Chim. Acta, 579(1, 2), 74, 2006.
  • Kuchen, W., Schram, J., Metal-ion-selective exchange resins by matrix imprint with methacrylates, Angew. Chem. Int. Ed. Engl., 27, 1695, 1988.
  • Dai, S., Burleigh, M.C., Shin, Y., Morrdw, C.C., Barnes, C.E., Imprint coating: A novel synthesis of selective functionalized ordered mesoporous sorbents, Angew. Chem. Int. Ed., 38(9), 1235, 1999.
  • Kanazawa, R., Yoshida, T., Gotoh, T., Sakohara, S., Preparation of molecular imprinted thermosensitive gel adsorbents and adsorption/desorption properties of heavy metal ions by temperature swing. J. Chem. Eng. Jpn., 37, 59, 2004.
  • Kesenci, K., Say, R., Denizli, A., Removal of heavy metal ions from water by using poly(ethyleneglycol dimeth- acrylate-co-acrylamide) beads, Eur. Polym. J., 38(7), 1443, 2002.
  • Denizli, A., Garipcan, B., Karabakan, A., Say, R., Emir, S., Patır, S., Metal-complexing ligand methacryloylamido- cysteine containing polymer beads for Cd(II) removal, Sep. Purif. Technol., 30(1), 3, 2003.
  • Denizli, A., Salih, B., Pişkin, E., New sorbents for removal of heavy metal ions: diamine-glow-discharge treated polyhydroxyethyl methacrylate microspheres, J. Chromatogr. A, 773(1-2), 169, 1997.
  • Jaganathan, J., Ewing K.J., Aggarwal, I., Determination of iron, cobalt, nickel and copper in a zirconium-based glass by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 1287, 1992.
  • Soares, M.E., Bastos, M.L., Ferreira, M.A., Determination of copper, iron, aluminium, lead and cadmium in cork stoppers by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 8, 655, 1993.
  • Pourreza, N., Hoveizavi, R., Simultaneous precon- centration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination, Anal. Chim. Acta, 549, 124, 2005.
  • Satake, M., Nagahiro T., Puri, B.K., Column
  • preconcentration of iron(III) with an ion pair of 1,2- dihydroxybenzene-3,5-disulfonate and benzyldimethyltetra- decylammonium ion supported on naphthalene using flame atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 183, 1992.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Muharrem Karabörk Bu kişi benim

Ebru Birlik Özkütük Bu kişi benim

Arzu Ersöz Bu kişi benim

Rıdvan Say Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 38 Sayı: 1

Kaynak Göster

APA Karabörk, M., Özkütük, E. B., Ersöz, A., Say, R. (2010). Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles. Hacettepe Journal of Biology and Chemistry, 38(1), 27-39.
AMA Karabörk M, Özkütük EB, Ersöz A, Say R. Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles. HJBC. Ocak 2010;38(1):27-39.
Chicago Karabörk, Muharrem, Ebru Birlik Özkütük, Arzu Ersöz, ve Rıdvan Say. “Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles”. Hacettepe Journal of Biology and Chemistry 38, sy. 1 (Ocak 2010): 27-39.
EndNote Karabörk M, Özkütük EB, Ersöz A, Say R (01 Ocak 2010) Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles. Hacettepe Journal of Biology and Chemistry 38 1 27–39.
IEEE M. Karabörk, E. B. Özkütük, A. Ersöz, ve R. Say, “Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles”, HJBC, c. 38, sy. 1, ss. 27–39, 2010.
ISNAD Karabörk, Muharrem vd. “Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles”. Hacettepe Journal of Biology and Chemistry 38/1 (Ocak 2010), 27-39.
JAMA Karabörk M, Özkütük EB, Ersöz A, Say R. Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles. HJBC. 2010;38:27–39.
MLA Karabörk, Muharrem vd. “Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles”. Hacettepe Journal of Biology and Chemistry, c. 38, sy. 1, 2010, ss. 27-39.
Vancouver Karabörk M, Özkütük EB, Ersöz A, Say R. Selective Preconcentration of Fe3+ Using Ion-Imprinted Thermosensitive Particles. HJBC. 2010;38(1):27-39.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc