BibTex RIS Cite

Metallomics as a Junction between Life Sciences

Year 2011, Volume: 39 Issue: 2, 173 - 188, 01.04.2011

Abstract

Metallomics is a rapidly growing research area investigating the interaction of metals with biological mol- ecules e.g. DNA, proteins and metabolites in living systems. It aims the understanding of all metal de- pendent metabolic processes such as uptake, transport, storage and excretion at molecular level. In order to access the qualitative and quantitative information of metals, which mostly occur at trace amounts and in the form of non-covalent complexes with biological ligands in a highly complex biological matrix, and to elucidate the metal-dependent life processes, metallomics utilizes the state of the art analytical and spectroscopic tech- niques. The mostly used approach for the analysis of metal complexes by preserving native metal species is the hyphenation of a chromatographic or an electrophoretic technique for high resolution separation with an elemental e.g., ICP-MS or molecular e.g., ESI-MS or MALDI-MS spectrometry technique for detection and/ or identification. X-ray absorption and X-ray fluorescence spectrometry and in-silico approaches with bioinfor- matics are among other main techniques/methodologies contributing the research activities in metallomics. This study highlights the basic terms, primarily used analytical approaches, state-of-the art instrumental tech- niques and very representative recent applications in the field.

References

  • 1. R.M. Twyman, Principles of Proteomics, Taylor & Francis Group, 2004.
  • 2. C.L. de Hoog, M. Mann, Proteomics, Annu. Rev. Genomics Hum. Genet., 5 (2004) 267
  • 3. B. Domon, R. Aebersold, Mass spectrometry and protein analysis, Science, 312 (2006) 212.
  • 4. Collins Dictionary of Biology, London: Collins, 2005. Web. 26 Oct. 2010. http://www.credoreference.com/ entry/collinsbiology/omics
  • 5. B. Jorde Lynn, Chapter 10. Genomics and Epigenetics (Chapter). M.A. Lichtman, T.J. Kipps, U. Seligsohn, K. Kaushansky, J.T. Prchal: Williams Hematology, 8e:http://www.accessmedicine.com/content. aspx?aID=6127928.
  • 6. X. Feng, X. Liu, Q. Luo, B.F. Liu, Mass spectrometry in systems biology: an overview, Mass Spectrom. Rev., 27 (2008) 635.
  • 7. W.B. Dunn, D.I. Ellis, Metabolomics: Current analytical platforms and methodologies, Trends Analyt. Chem., 24 (2005) 285.
  • 8. R. Lobinski, J.S. Becker, H. Haraguchi, B. Sarkar, Metallomics: Guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report), Pure Appl. Chem., 82 (2010) 493.
  • 9. J.J.R. Frausto da Silva, R.J.P. Williams, The biological chemistry of the elements: the inorganic chemistry of life, second edition, Oxford University Press, 2001.
  • 10. J. Szpunar, Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics, Analyst, 130 (2005) 442.
  • 11. B.L. Vallee, W.E.C. Wacker, Metalloproteins, vol. 5, Second edition, Academic Press, New York, 1-192, 1970.
  • 12. W. Shi, M.R. Chance, Metallomics and metalloproteomics, Cell. Mol. Life Sci., 65 (2008) 3040.
  • 13. R.J.P Williams, Chemical selection of elements by cells, Coord. Chem. Rev., 216-217 (2001) 583.
  • 14. H. Haraguchi, T. Matsuura, In Bio-Trace Elements (BITREL 2002), E. Enomoto (Ed.), RIKEN (Research Institute of Physics and Chemistry), Wako, 2002.
  • 15. H. Haraguchi, Metallomics as integrated biometal science, J. Anal. At. Spectrom., 19 (2004) 5.
  • 16. S. Mounicou, J. Szpunar, R. Lobinski, Metallomics: the concept and methodology, Chem. Soc. Rev., 38 (2009) 1119.
  • 17. S. Mounicou, J. Szpunar, R. Lobinski, Inductivelycoupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies, Eur. J. Mass Spectrom., 16 (2010) 243.
  • 18. R. Lobinski, C. Moulin, R. Ortega, Imaging and speciation of trace elements in biological environment, Biochimie, 88 (2006) 1591.
  • 19. W. Shi, C. Zhan, A. Ignatov, B.A. Manjasetty, N. Marinkovic, M. Sullivan, R. Huang, M.R. Chance, Metalloproteomics: High-throughput structural and functional annotation of proteins in structural genomics, Structure, 13 (2005) 1473.
  • 20. J.D. Cook, J.E. Penner-Hahn, T.L. Stemmler, Structure and dynamics of metalloproteins in live cells, Methods Cell Biol., 90 (2009) 199.
  • 21. S. Chevreux, S. Roudeau, A. Fraysse, A. Carmona, G. Devès, P.L. Solari, T.C. Weng, R. Ortega, Direct speciation of metals in copper-zinc superoxide dismutase isoforms on electrophoresis gels using X-ray absorption near edge structure, J. Anal. At. Spectrom., 23 (2008) 1117.
  • 22. R. Ortega, Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels, Metallomics, 1 (2009) 137.
  • 23. J.B. Aitken, E.A. Carter, H. Eastgate, M.J. Hackett, H.H. Harris, A. Levina, Y-C. Lee, C-I. Chen, B. Lai, S. Vogt, P.A. Lay, Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems, Radiat. Phys.Chem., 79 (2010) 176.
  • 24. C. Wolf, N. Wenda, A. Richter, A. Kyriakopoulos, Alteration of biological samples in speciation analysis of metalloproteins, Anal. Bioanal. Chem., 389 (2007) 799.
  • 25. R. McRae, P. Bagchi, S. Sumalekshmy, C.J. Fahrni, In situ imaging of metals in cells and tissues, Chem. Rev. 109 (2009) 4780.
  • 26. J.S. Becker, M. Zoriy, V.L. Dressler, B. Wu, J.S. Becker, Imaging of metals and metal-containing species in biological tissues and on gels by laser ablation inductively coupled plasma mass spectrometry (LAICP-MS): A new analytical strategy for applications in life sciences, Pure Appl. Chem., 80 (2008) 2643.
  • 27. J.S. Becker, A. Matusch, C. Palm, D. Salber, K.A. Morton, J.S. Becker, Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics, Metallomics, 2 (2010) 104.
  • 28. B. Wu, M. Zoriy, Y. Chen, J.S. Becker, Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Talanta, 78 (2009) 132.
  • 29. B. Sprengler, Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules, J. Mass Spectrom., 32 (1997) 1019.
  • 30. J. Rappsilber, M. Moniatte, M.L. Nielsen, A.V. Podtelejnikov, M. Mann, Experiences and perspectives of MALDI MS and MS/MS in proteomic research, Int. J. Mass Spectrom., 226 (2003) 223.
  • 31. Y. Li, J.M. Liu, Y.L. Xia, Y. Jiang, X.P. Yan, CE with online detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione, Electrophoresis, 29 (2008) 4568.
  • 32. R. Tomas, K. Kleparnik, F. Foret, Multidimensional liquid phase separations for mass spectrometry, J. Sep. Sci., 31 (2008) 1964.
  • 33. R. Lobinski, D. Schaumlöffel, J. Szpunar, Mass spectrometry in bioinorganic analytical chemistry, Mass Spectrom. Rev., 25 (2006) 255.
  • 34. J. Bettmer, M.M. Bayón, J.R. Encinar, M.L. Fernández Sánchez, M.R. Fernández de la Campa, A. Sanz-Medel, The emerging role of ICP-MS in proteomic analysis, J. Proteom., 72 (2009) 989.
  • 35. D.A. Rogers, S.J. Ray, G.M. Hieftje, An electrospray/ inductively coupled plasma dual-source time-offlight mass spectrometer for rapid metallomic and speciation analysis: Part 1. Molecular channel characterization, Metallomics, 2 (2010) 271.
  • 36. D.A. Rogers, S.J. Ray, G.M. Hieftje, An electrospray/ inductively coupled plasma dual-source time-offlight mass spectrometer for rapid metallomic and speciation analysis: Part 2. Atomic channel and dualchannel characterization, Metallomics, 2 (2010) 280.
  • 37. A.M. Lesk, Introduction to Bioinformatics, Oxford University Press, Second edition, New York, 2002.
  • 38. P. Kersey, R. Apweiler, Linking publication, gene and protein data, Nat. Cell Biol., 8 (2006) 1183.
  • 39. H. Kitano, Computational systems biology, Nature, 420 (2002) 206.
  • 40. C. Andreini, L. Banci, I. Bertini, A. Rosato, Metalloproteomes: A bioinformatic approach, Acc. Chem. Res., 42 (2009) 1471.
  • 41. R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E.L.L. Sonnhammer, S.R. Eddy, A. Bateman, The Pfam protein families database, Nucleic Acids Res., 38 (2009), D211.
  • 42. I. Bertini, G. Cavallaro, Bioinformatics in bioinorganic chemistry, Metallomics, 2 (2010) 39.
  • 43. W. Maret, Metalloproteomics, metalloproteomes, and the annotation of metalloproteins, Metallomics, 2 (2010) 117.
  • 44. D.J. Thiele, J.D. Gitlin, Assembling the pieces, Nat. Chem. Biol., 4 (2008) 145.
  • 45. G.F. Nordberg, B.A. Fowler, M. Nordberg, L.T. Friberg, Handbook on the Toxicology of Metals (Eds: Nordberg GF, Fowler BA, Nordberg M, Friberg LT), Third edition, Elsevier, 2007.
  • 46. G. Haferburg, E. Kothe, Metallomics: lessons for metalliferous soil remediation, Appl. Microbiol. Biotechnol., 87 (2010) 1271.
  • 47. S. Clemens, Molecular mechanism of plant metal tolerance and homeostasis, Planta, 212 (2001) 475.
  • 48. N. Ahsan, J. Renaut, S. Komatsu, Recent developments in the application of proteomics to the analysis of plant responses to heavy metals, Proteomics, 9 (2009) 2602.
  • 49. R. Pal, J.P.N. Rai, Phytochelatins: Peptides involved in heavy metal detoxification, Appl. Biochem. Biotechnol., 160 (2010) 945.
  • 50. J.A.L. Figueroa, S. Afton, K. Wrobel, K. Wrobel, J.A. Caruso, Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil-plant system, J. Anal. At. Spectrom., 22 (2007) 897.
  • 51. H. Zaier, A. Mudarra, D. Kutscher, M.R. Fernández de la Campa, C. Abdelly, A. Sanz-Medel, Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry, Anal. Chim. Acta, 671 (2010) 48.
  • 52. A. Polatajko, M. Azzolini, I. Feldmann, T. Stuezel, N. Jakubowski, Laser ablation-ICP-MS assay development for detecting Cd- and Zn-binding proteins in Cd-exposed Spinacia oleracea L., J. Anal. At. Spectrom., 22 (2007) 878.
  • 53. J.S. Becker, S. Mounicou, M.V. Zoriy, J.S. Becker, R. Lobinski, Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LAICP-MS), Talanta, 76 (2008) 1183.
  • 54. M. González-Fernández, T. García-Barrera, J. Jurado, M.J. Prieto-Álamo, C. Pueyo, J. LópezBarea, J.L. Gómez-Ariza, Integrated application of transcriptomics, proteomics, and metallomics in environmental studies, Pure Appl. Chem., 80 (2008) 2609.
  • 55. M. González-Fernández, T. García-Barrera, A. AriasBorrego, J. Jurado, C. Pueyo, J. López-Barea, J.L. Gómez-Ariza, Metallomics integrated with proteomics in deciphering metal-related environmental issues, Biochimie, 91 (2009) 1311.
  • 56. R.M. Montes Nieto, T. García-Barrera, J.L. GómezAriza, J. López-Barea, Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas, Environ. Pollut., 158 (2010) 401.
  • 57. H. Zhang, X. He, W. Bai, X. Guo, Z. Zhang, Z. Chai, Y. Zhao, Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium, Metallomics 2 (2010) 806.
  • 58. B. Lahner, J. Gong, M. Mahmoudian, E.L. Smith, K.B. Abid, E.E. Rogers, M.L. Guerinot, J.F. Harper, J.M. Ward, L. McIntyre, J.I. Schroeder, D.E. Salt, Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana, Nat. Biotechnol., 21 (2003) 1215.
  • 59. D.J. Eide, S. Clark, T.M. Nair, M. Gehl, M. Gribskov, M.L. Guerinot, J.F. Harper, Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae, Genome Biol., 6 (2005) R77.
  • 60. V. Vacchina, S. Mari, P. Czernic, L. Marques, K. Pianelli, D. Schaumlöffel, M. Lebrun, R. Lobinski, Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatographyinductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation, Anal. Chem., 75 (2003) 2740.
  • 61. K. Wrobel, K. Wrobel, J.A. Caruso, Epigenetics: an important challenge for ICP-MS in metallomics studies, Anal. Bioanal. Chem., 393 (2009) 481.
  • 62. A. Arita, M. Costa, Epigenetics in metal carcinogenesis: nickel, arsenic, chromium, and cadmium, Metallomics, 1 (2009) 222.
  • 63. P.P. Kulkarni, Y.M. She, S.D. Smith, E.A. Roberts, B. Sarkar, Proteomics of metal transport and metalassociated diseases, Chem. Eur. J., 12 (2006) 2410.
  • 64. S. Rivera-Mancía, I. Pérez-Neri, C. Ríos, L. TristánLópez, L. Rivera-Espinosa, S. Montes, The transition metals copper and iron in neurodegenerative diseases, Chem. Biol. Interact., 186 (2010) 184.
  • 65. J.S. Becker, M. Zoriy, C. Pickhardt, M. Przybylski, J.S. Becker, Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS, Int. J. Mass Spectrom., 242 (2005) 135.
  • 66. J.S. Becker, D. Salber, New mass spectrometric tools in brain research, Trends Analyt. Chem., 29 (2010) 966.
  • 67. A. Prange, D. Schaumloffel, P. Bratter, A.N. Richarz, C. Wolf, Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma-sector field mass spectrometry, Fresenius J. Anal. Chem., 371 (2001) 764.
  • 68. E.Z. Jahromi, W. White, Q. Wu, R. Yamdagni, J. Gailer, Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma, Metallomics, 2 (2010) 460.
  • 69. A. Sussulini, H. Kratzin, O. Jahn, C.E. Muller Banzato, M.A. Zezzi Arruda, J.S. Becker, Metallomics studies of human blood serum from treated bipolar disorder patients, Anal. Chem., 82 (2010) 5859.
  • 70. J. Ellis, E. Del Castillo, M. Montes Bayon, R. Grimm, J.F. Clark, G. Pyne-Geithman, S. Wilbur, J.A. Caruso, A preliminary study of metalloproteins in CSF by capLCICPMS and nanoLC-CHIP/ITMS, J. Proteome Res., 7 (2008) 3747.
  • 71. Y. Zhang, J.F. Clark, G. Pyne-Geithman, J. Caruso, Metallomics study in CSF for putative biomarkers to predict cerebral vasospasm, Metallomics, 2 (2010) 628.
  • 72. A. Mudarra Rubio, M. Montes-Bayón, E. BlancoGonzález, A. Sanz-Medel, Sample preparation strategies for quantitative analysis of catalase in red blood cells by elemental mass spectrometry, Metallomics, 2 (2010) 638.
  • 73. P.C.A. Bruijnincx, P.J. Sadler, New trends for metal complexes with anticancer activity, Curr. Opin. Chem. Biol., 12 (2008) 197.
  • 74. L.A. Ba, M. Doering, T. Burkholz, C. Jacob, Metal trafficking: from maintaining the metal homeostasis to future drug design, Metallomics, 1 (2009) 292.
  • 75. F. Magherini, A. Modesti, L. Bini, M. Puglia, I. Landini, S. Nobili, E. Mini, M.A. Cinellu, C. Gabbiani, L. Messori, Exploring the biochemical mechanisms of cytotoxic gold compounds: A proteomic study, J. Biol. Inorg. Chem., 15 (2010) 573.
  • 76. A. Levina, A. Mitra, P.A. Lay, Recent developments in ruthenium anticancer drugs, Metallomics, 1 (2009) 458.
  • 77. Y. Jung, S.J. Lippard, Direct cellular responses to platinum-induced DNA damage, Chem. Rev., 107 (2007) 1387.
  • 78. P. Bednarski, F. Mackay, P. Sadler, Photoactivatable platinum complexes, Anti-Cancer Agents Med. Chem., 7 (2007) 75.
  • 79. D. Crespy, K. Landfester, U.S. Schubertb, A. Schiller, Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs, Chem. Commun., 46 (2010) 6651.
  • 80. Z. Yang, X. Wang, H. Diao, J. Zhang, H. Li, H. Sun, Z. Guo, Encapsulation of platinum anticancer drugs by apoferritin, Chem. Commun., 33 (2007) 3453.
  • 81. F. Arnesano, A. Boccarelli, D. Cornacchia, F. Nushi, R. Sasanelli, M. Coluccia, G. Natile, Mechanistic insight into the inhibition of matrix metalloproteinases by platinum substrates, J. Med. Chem., 52 (2009) 7847.
  • 82. S.P. Fricker, Cysteine proteases as targets for metalbased drugs, Metallomics, 2 (2010) 366.
  • 83. K.S.M. Smalley, R. Contractor, N.K. Haass, A.N. Kulp, G.E. Atilla-Gokcumen, D.S. Williams, H. Bregman, K.T. Flaherty, M.S. Soengas, E. Meggers, M. Herlyn, An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells, Cancer Res., 67 (2007) 209.
  • 84. A. Vessieres, C. Corbet, J.M. Heldt, N. Lories, N. Jouy, I. Laïos, G. Leclercq, G. Jaouen, R.A. Toillon, A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines, J. Inorg. Biochem., 104 (2010) 503.
  • 85. B. Biot, N. Chavain, F. Dubar, B. Pradines, X. Trivelli, J. Brocard, I. Forfar, D. Dive, Structure-activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine, J. Organomet. Chem., 694 (2009) 845.
  • 86. G.J. Brewer, Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases, Metallomics, 1 (2009) 199.
  • 87. A. Casini, C. Gabbiani, E. Michelucci, G. Pieraccini, G. Moneti, P.J. Dyson, L. Messori, Exploring metallodrugprotein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound, J. Biol. Inorg. Chem., 14 (2009) 761.
  • 88. M. Groessl, M. Terenghi, A. Casini, L. Elviri, R. Lobinski, P.J. Dyson, Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS, J. Anal. At. Spectrom., 25 (2010) 305.
  • 89. D. Esteban-Fernández, E. Moreno-Gordaliza, B. Cañas, M.A. Palacios, M.M. Gómez-Gómez, Analytical methodologies for metallomics studies of antitumor Pt-containing drugs, Metallomics, 2 (2010) 19.
  • 90. J.K. Abramski, L.S. Foteeva, K. Pawlak, A.R. Timerbaev, M. Jarosz, A versatile approach for assaying in vitro metallodrug metabolism using CE hyphenated with ICP-MS, Analyst, 134 (2009) 1999.
  • 91. M. Sooriyaarachchi, J. Gailer, Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES, Dalton Trans., 39 (2010) 7466.
  • 92. A. Tholey, D. Schaumlöffel, Metal labeling for quantitative protein and proteome analysis using inductively-coupled plasma mass spectrometry, Trends Analyt. Chem., 29 (2010) 399.
  • 93. S. Bomke, M. Sperling, U. Karst, Organometallic derivatizing agents in bioanalysis, Anal. Bioanal. Chem., 397 (2010) 3483.
  • 94. R. Ahrends, S. Pieper, B. Neumann, C. Scheler, M.W. Linscheid, Metal-coded affinity tag labeling: a demonstration of analytical robustness and suitability for biological applications, Anal. Chem., 81 (2009) 2176.
  • 95. N. Jakubowski, L. Waentig, H. Hayen, A. Venkatachalam, A. von Bohlen, P.H. Roos, A. Manz, Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4, 7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and lanthanides and detection by ICP-MS, J. Anal. At. Spectrom., 23 (2008) 1497.
  • 96. C. Zhang, F. Wu, Y. Zhang, X. Wang, X. Zhang, A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum, J. Anal. At. Spectrom., 16 (2001) 1393.
  • 98. Y. Lu, W. Wang, Z. Xing, S. Wang, P. Cao, S. Zhang, X. Zhang, Development of an ICP-MS immunoassay for the detection of anti-erythropoietin antibodies, Talanta, 78 (2009) 869.
  • 99. C. Giesen, N. Jakubowski, U. Panne, M.G. Weller, Comparison of ICP-MS and photometric detection of an immunoassay for the determination of ochratoxin A in wine, J. Anal. At. Spectrom., 25 (2010) 1567.
  • 100.S.D. Müller, R.A. Diaz-Bone, J. Felix, W. Goedecke, Detection of specific proteins by laser ablation inductively coupled plasma mass spectrometry (LAICP-MS) using gold cluster labelled antibodies, J. Anal. At. Spectrom., 20 (2005) 907.
  • 101.D.J. Kutscher, J. Bettmer, Absolute and relative protein quantification with the use of isotopically labeled p-hydroxymercuribenzoic acid and complementary MALDI-MS and ICPMS detection, Anal. Chem., 81 (2009) 9172.
  • 102.O. Ornatsky, V.I. Baranov, D.R. Bandura, S.D. Tanner, J. Dick, Multiple cellular antigen detection by ICP-MS, J. Immunol. Methods, 308 (2006) 68.
  • 103.D. Dinakarpandian, V. Morrissette, S. Chaudhary, K. Amini, B. Bennett, J.D. Van Horn, An informatics search for the low-molecular weight chromium binding peptide, BMC Chem. Biol., 4 (2004) 1.
  • 104.İ.İ. Boşgelmez, T. Söylemezoğlu, G. Güvendik, The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue, Biol. Trace Elem. Res., 125 (2008) 46.
  • 105.S. Döker, S. Mounicou, M. Doğan, R. Lobinski, Probing the metal-homeostatis effects of the administration of chromium(VI) to mice by ICP MS and size-exclusion chromatography-ICP MS, Metallomics, 2 (2010) 549.
  • 106.A. Levina, P.A. Lay, Chemical properties and toxicity of chromium(III) nutritional supplements, Chem. Res. Toxicol., 21 (2008) 563.
  • 107.İ.İ. Boşgelmez, S. Döker, G. Güvendik, Krom(III) içeren destekleyici preparatların toksikolojik ve farmakolojik açıdan değerlendirilmesi, Modern Fitofarmakoterapi ve Doğal Farmasötikler, 1 (2010) 51.
  • 108.N. Kaewkhomdee, S. Mounicou, J. Szpunar, R. Lobinski, J. Shiowatana, Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection, Anal. Bioanal. Chem., 396 (2010) 1355.
  • 109.J. Far, H. Preud’homme, R. Lobinski, Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection, Anal. Chim. Acta, 657 (2010) 175.
  • 110. L. Tastet, D. Schaumlöffel, A. Yiannikouris, R. Power, R. Lobinski, Insight in the transport behavior of copper glycinate complexes through the porcine gastrointestinal membrane using an Ussing chamber assisted by mass spectrometry analysis, J. Trace Elem. Med. Biol., 24 (2010) 124.
  • 111. O. Alp, E.J. Merino, J.A. Caruso, Arsenic-induced protein phosphorylation changes in HeLa cells, Anal. Bioanal. Chem., 398 (2010) 2099.
  • 112. Y. Ogra, Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies, Anal.Sci., 25 (2009) 1189.
  • 113.R.N. Easter, Q. Chan, B. Lai, E.L. Ritman, J.A. Caruso, Z. Qin, Vascular metallomics: Copper in the vasculature, Vasc. Med., 15 (2010) 61

Yaşam Bilimleri Arasında Bir Bağlantı Noktası Olarak Metallomik

Year 2011, Volume: 39 Issue: 2, 173 - 188, 01.04.2011

Abstract

Metallomik, canlılarda metallerin biyolojik moleküllerle örn.,DNA, proteinler ve metabolitler etkileşimini inceleyen ve hızla gelişen bir araştırma alanıdır. Metallerin biyolojik sistemde geçirdiği tüm metabolik süreçlerin alım, taşınma, depolanma ve atılım gibi moleküler düzeyde anlaşılmasını hedefler. Metaller, biyolojik sistemlerde eser düzeylerde, genellikle kovalent olmayan koordinasyon kompleksleri halinde ve oldukça karmaşık bir biyolojik çevrede bulunur. Bu nedenle metallomik, metallere ilişkin nitel ve nicel bilgi edinilmesi ve metal-bağımlı yaşamsal süreçlerin aydınlatılması amacıyla, ileri analitik ve spektroskopik tekniklerden yararlanır. Metalik türlerin fizyolojik ortamdaki doğal formunu korumak suretiyle metal komplekslerinin analizi için en yaygın yaklaşım, Hibrit Tekniklerin kullanılmasıdır; bu sistemde, bileşenlerin yüksek çözünürlükte ayrımı için kromatografik veya elektroforetik bir teknik ile tayin ve/veya tanımlama için element örn., ICPMS veya moleküle örn., ESI-MS veya MALDI-MS özgül bir spektrometrik teknik birlikte kullanılmaktadır. X-ışınları absorpsiyon ve X-ışınları floresans spektroskopisi teknikleri ile bilgisayar-destekli teknolojileri içeren biyoinformatik yaklaşımlar da metallomik alanındaki araştırmalara katkı sağlayan diğer araçlar arasındadır. Bu çalışmada alanla ilgili temel kavramlar, kullanılan başlıca analitik yaklaşımlar ve ileri aletsel teknikler ele alınmış ve yakın zamanda yapılmış çalışmalardan örnekler seçilerek derlenmiştir

References

  • 1. R.M. Twyman, Principles of Proteomics, Taylor & Francis Group, 2004.
  • 2. C.L. de Hoog, M. Mann, Proteomics, Annu. Rev. Genomics Hum. Genet., 5 (2004) 267
  • 3. B. Domon, R. Aebersold, Mass spectrometry and protein analysis, Science, 312 (2006) 212.
  • 4. Collins Dictionary of Biology, London: Collins, 2005. Web. 26 Oct. 2010. http://www.credoreference.com/ entry/collinsbiology/omics
  • 5. B. Jorde Lynn, Chapter 10. Genomics and Epigenetics (Chapter). M.A. Lichtman, T.J. Kipps, U. Seligsohn, K. Kaushansky, J.T. Prchal: Williams Hematology, 8e:http://www.accessmedicine.com/content. aspx?aID=6127928.
  • 6. X. Feng, X. Liu, Q. Luo, B.F. Liu, Mass spectrometry in systems biology: an overview, Mass Spectrom. Rev., 27 (2008) 635.
  • 7. W.B. Dunn, D.I. Ellis, Metabolomics: Current analytical platforms and methodologies, Trends Analyt. Chem., 24 (2005) 285.
  • 8. R. Lobinski, J.S. Becker, H. Haraguchi, B. Sarkar, Metallomics: Guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report), Pure Appl. Chem., 82 (2010) 493.
  • 9. J.J.R. Frausto da Silva, R.J.P. Williams, The biological chemistry of the elements: the inorganic chemistry of life, second edition, Oxford University Press, 2001.
  • 10. J. Szpunar, Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics, Analyst, 130 (2005) 442.
  • 11. B.L. Vallee, W.E.C. Wacker, Metalloproteins, vol. 5, Second edition, Academic Press, New York, 1-192, 1970.
  • 12. W. Shi, M.R. Chance, Metallomics and metalloproteomics, Cell. Mol. Life Sci., 65 (2008) 3040.
  • 13. R.J.P Williams, Chemical selection of elements by cells, Coord. Chem. Rev., 216-217 (2001) 583.
  • 14. H. Haraguchi, T. Matsuura, In Bio-Trace Elements (BITREL 2002), E. Enomoto (Ed.), RIKEN (Research Institute of Physics and Chemistry), Wako, 2002.
  • 15. H. Haraguchi, Metallomics as integrated biometal science, J. Anal. At. Spectrom., 19 (2004) 5.
  • 16. S. Mounicou, J. Szpunar, R. Lobinski, Metallomics: the concept and methodology, Chem. Soc. Rev., 38 (2009) 1119.
  • 17. S. Mounicou, J. Szpunar, R. Lobinski, Inductivelycoupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies, Eur. J. Mass Spectrom., 16 (2010) 243.
  • 18. R. Lobinski, C. Moulin, R. Ortega, Imaging and speciation of trace elements in biological environment, Biochimie, 88 (2006) 1591.
  • 19. W. Shi, C. Zhan, A. Ignatov, B.A. Manjasetty, N. Marinkovic, M. Sullivan, R. Huang, M.R. Chance, Metalloproteomics: High-throughput structural and functional annotation of proteins in structural genomics, Structure, 13 (2005) 1473.
  • 20. J.D. Cook, J.E. Penner-Hahn, T.L. Stemmler, Structure and dynamics of metalloproteins in live cells, Methods Cell Biol., 90 (2009) 199.
  • 21. S. Chevreux, S. Roudeau, A. Fraysse, A. Carmona, G. Devès, P.L. Solari, T.C. Weng, R. Ortega, Direct speciation of metals in copper-zinc superoxide dismutase isoforms on electrophoresis gels using X-ray absorption near edge structure, J. Anal. At. Spectrom., 23 (2008) 1117.
  • 22. R. Ortega, Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels, Metallomics, 1 (2009) 137.
  • 23. J.B. Aitken, E.A. Carter, H. Eastgate, M.J. Hackett, H.H. Harris, A. Levina, Y-C. Lee, C-I. Chen, B. Lai, S. Vogt, P.A. Lay, Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems, Radiat. Phys.Chem., 79 (2010) 176.
  • 24. C. Wolf, N. Wenda, A. Richter, A. Kyriakopoulos, Alteration of biological samples in speciation analysis of metalloproteins, Anal. Bioanal. Chem., 389 (2007) 799.
  • 25. R. McRae, P. Bagchi, S. Sumalekshmy, C.J. Fahrni, In situ imaging of metals in cells and tissues, Chem. Rev. 109 (2009) 4780.
  • 26. J.S. Becker, M. Zoriy, V.L. Dressler, B. Wu, J.S. Becker, Imaging of metals and metal-containing species in biological tissues and on gels by laser ablation inductively coupled plasma mass spectrometry (LAICP-MS): A new analytical strategy for applications in life sciences, Pure Appl. Chem., 80 (2008) 2643.
  • 27. J.S. Becker, A. Matusch, C. Palm, D. Salber, K.A. Morton, J.S. Becker, Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics, Metallomics, 2 (2010) 104.
  • 28. B. Wu, M. Zoriy, Y. Chen, J.S. Becker, Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Talanta, 78 (2009) 132.
  • 29. B. Sprengler, Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules, J. Mass Spectrom., 32 (1997) 1019.
  • 30. J. Rappsilber, M. Moniatte, M.L. Nielsen, A.V. Podtelejnikov, M. Mann, Experiences and perspectives of MALDI MS and MS/MS in proteomic research, Int. J. Mass Spectrom., 226 (2003) 223.
  • 31. Y. Li, J.M. Liu, Y.L. Xia, Y. Jiang, X.P. Yan, CE with online detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione, Electrophoresis, 29 (2008) 4568.
  • 32. R. Tomas, K. Kleparnik, F. Foret, Multidimensional liquid phase separations for mass spectrometry, J. Sep. Sci., 31 (2008) 1964.
  • 33. R. Lobinski, D. Schaumlöffel, J. Szpunar, Mass spectrometry in bioinorganic analytical chemistry, Mass Spectrom. Rev., 25 (2006) 255.
  • 34. J. Bettmer, M.M. Bayón, J.R. Encinar, M.L. Fernández Sánchez, M.R. Fernández de la Campa, A. Sanz-Medel, The emerging role of ICP-MS in proteomic analysis, J. Proteom., 72 (2009) 989.
  • 35. D.A. Rogers, S.J. Ray, G.M. Hieftje, An electrospray/ inductively coupled plasma dual-source time-offlight mass spectrometer for rapid metallomic and speciation analysis: Part 1. Molecular channel characterization, Metallomics, 2 (2010) 271.
  • 36. D.A. Rogers, S.J. Ray, G.M. Hieftje, An electrospray/ inductively coupled plasma dual-source time-offlight mass spectrometer for rapid metallomic and speciation analysis: Part 2. Atomic channel and dualchannel characterization, Metallomics, 2 (2010) 280.
  • 37. A.M. Lesk, Introduction to Bioinformatics, Oxford University Press, Second edition, New York, 2002.
  • 38. P. Kersey, R. Apweiler, Linking publication, gene and protein data, Nat. Cell Biol., 8 (2006) 1183.
  • 39. H. Kitano, Computational systems biology, Nature, 420 (2002) 206.
  • 40. C. Andreini, L. Banci, I. Bertini, A. Rosato, Metalloproteomes: A bioinformatic approach, Acc. Chem. Res., 42 (2009) 1471.
  • 41. R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E.L.L. Sonnhammer, S.R. Eddy, A. Bateman, The Pfam protein families database, Nucleic Acids Res., 38 (2009), D211.
  • 42. I. Bertini, G. Cavallaro, Bioinformatics in bioinorganic chemistry, Metallomics, 2 (2010) 39.
  • 43. W. Maret, Metalloproteomics, metalloproteomes, and the annotation of metalloproteins, Metallomics, 2 (2010) 117.
  • 44. D.J. Thiele, J.D. Gitlin, Assembling the pieces, Nat. Chem. Biol., 4 (2008) 145.
  • 45. G.F. Nordberg, B.A. Fowler, M. Nordberg, L.T. Friberg, Handbook on the Toxicology of Metals (Eds: Nordberg GF, Fowler BA, Nordberg M, Friberg LT), Third edition, Elsevier, 2007.
  • 46. G. Haferburg, E. Kothe, Metallomics: lessons for metalliferous soil remediation, Appl. Microbiol. Biotechnol., 87 (2010) 1271.
  • 47. S. Clemens, Molecular mechanism of plant metal tolerance and homeostasis, Planta, 212 (2001) 475.
  • 48. N. Ahsan, J. Renaut, S. Komatsu, Recent developments in the application of proteomics to the analysis of plant responses to heavy metals, Proteomics, 9 (2009) 2602.
  • 49. R. Pal, J.P.N. Rai, Phytochelatins: Peptides involved in heavy metal detoxification, Appl. Biochem. Biotechnol., 160 (2010) 945.
  • 50. J.A.L. Figueroa, S. Afton, K. Wrobel, K. Wrobel, J.A. Caruso, Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil-plant system, J. Anal. At. Spectrom., 22 (2007) 897.
  • 51. H. Zaier, A. Mudarra, D. Kutscher, M.R. Fernández de la Campa, C. Abdelly, A. Sanz-Medel, Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry, Anal. Chim. Acta, 671 (2010) 48.
  • 52. A. Polatajko, M. Azzolini, I. Feldmann, T. Stuezel, N. Jakubowski, Laser ablation-ICP-MS assay development for detecting Cd- and Zn-binding proteins in Cd-exposed Spinacia oleracea L., J. Anal. At. Spectrom., 22 (2007) 878.
  • 53. J.S. Becker, S. Mounicou, M.V. Zoriy, J.S. Becker, R. Lobinski, Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LAICP-MS), Talanta, 76 (2008) 1183.
  • 54. M. González-Fernández, T. García-Barrera, J. Jurado, M.J. Prieto-Álamo, C. Pueyo, J. LópezBarea, J.L. Gómez-Ariza, Integrated application of transcriptomics, proteomics, and metallomics in environmental studies, Pure Appl. Chem., 80 (2008) 2609.
  • 55. M. González-Fernández, T. García-Barrera, A. AriasBorrego, J. Jurado, C. Pueyo, J. López-Barea, J.L. Gómez-Ariza, Metallomics integrated with proteomics in deciphering metal-related environmental issues, Biochimie, 91 (2009) 1311.
  • 56. R.M. Montes Nieto, T. García-Barrera, J.L. GómezAriza, J. López-Barea, Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas, Environ. Pollut., 158 (2010) 401.
  • 57. H. Zhang, X. He, W. Bai, X. Guo, Z. Zhang, Z. Chai, Y. Zhao, Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium, Metallomics 2 (2010) 806.
  • 58. B. Lahner, J. Gong, M. Mahmoudian, E.L. Smith, K.B. Abid, E.E. Rogers, M.L. Guerinot, J.F. Harper, J.M. Ward, L. McIntyre, J.I. Schroeder, D.E. Salt, Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana, Nat. Biotechnol., 21 (2003) 1215.
  • 59. D.J. Eide, S. Clark, T.M. Nair, M. Gehl, M. Gribskov, M.L. Guerinot, J.F. Harper, Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae, Genome Biol., 6 (2005) R77.
  • 60. V. Vacchina, S. Mari, P. Czernic, L. Marques, K. Pianelli, D. Schaumlöffel, M. Lebrun, R. Lobinski, Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatographyinductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation, Anal. Chem., 75 (2003) 2740.
  • 61. K. Wrobel, K. Wrobel, J.A. Caruso, Epigenetics: an important challenge for ICP-MS in metallomics studies, Anal. Bioanal. Chem., 393 (2009) 481.
  • 62. A. Arita, M. Costa, Epigenetics in metal carcinogenesis: nickel, arsenic, chromium, and cadmium, Metallomics, 1 (2009) 222.
  • 63. P.P. Kulkarni, Y.M. She, S.D. Smith, E.A. Roberts, B. Sarkar, Proteomics of metal transport and metalassociated diseases, Chem. Eur. J., 12 (2006) 2410.
  • 64. S. Rivera-Mancía, I. Pérez-Neri, C. Ríos, L. TristánLópez, L. Rivera-Espinosa, S. Montes, The transition metals copper and iron in neurodegenerative diseases, Chem. Biol. Interact., 186 (2010) 184.
  • 65. J.S. Becker, M. Zoriy, C. Pickhardt, M. Przybylski, J.S. Becker, Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS, Int. J. Mass Spectrom., 242 (2005) 135.
  • 66. J.S. Becker, D. Salber, New mass spectrometric tools in brain research, Trends Analyt. Chem., 29 (2010) 966.
  • 67. A. Prange, D. Schaumloffel, P. Bratter, A.N. Richarz, C. Wolf, Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma-sector field mass spectrometry, Fresenius J. Anal. Chem., 371 (2001) 764.
  • 68. E.Z. Jahromi, W. White, Q. Wu, R. Yamdagni, J. Gailer, Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma, Metallomics, 2 (2010) 460.
  • 69. A. Sussulini, H. Kratzin, O. Jahn, C.E. Muller Banzato, M.A. Zezzi Arruda, J.S. Becker, Metallomics studies of human blood serum from treated bipolar disorder patients, Anal. Chem., 82 (2010) 5859.
  • 70. J. Ellis, E. Del Castillo, M. Montes Bayon, R. Grimm, J.F. Clark, G. Pyne-Geithman, S. Wilbur, J.A. Caruso, A preliminary study of metalloproteins in CSF by capLCICPMS and nanoLC-CHIP/ITMS, J. Proteome Res., 7 (2008) 3747.
  • 71. Y. Zhang, J.F. Clark, G. Pyne-Geithman, J. Caruso, Metallomics study in CSF for putative biomarkers to predict cerebral vasospasm, Metallomics, 2 (2010) 628.
  • 72. A. Mudarra Rubio, M. Montes-Bayón, E. BlancoGonzález, A. Sanz-Medel, Sample preparation strategies for quantitative analysis of catalase in red blood cells by elemental mass spectrometry, Metallomics, 2 (2010) 638.
  • 73. P.C.A. Bruijnincx, P.J. Sadler, New trends for metal complexes with anticancer activity, Curr. Opin. Chem. Biol., 12 (2008) 197.
  • 74. L.A. Ba, M. Doering, T. Burkholz, C. Jacob, Metal trafficking: from maintaining the metal homeostasis to future drug design, Metallomics, 1 (2009) 292.
  • 75. F. Magherini, A. Modesti, L. Bini, M. Puglia, I. Landini, S. Nobili, E. Mini, M.A. Cinellu, C. Gabbiani, L. Messori, Exploring the biochemical mechanisms of cytotoxic gold compounds: A proteomic study, J. Biol. Inorg. Chem., 15 (2010) 573.
  • 76. A. Levina, A. Mitra, P.A. Lay, Recent developments in ruthenium anticancer drugs, Metallomics, 1 (2009) 458.
  • 77. Y. Jung, S.J. Lippard, Direct cellular responses to platinum-induced DNA damage, Chem. Rev., 107 (2007) 1387.
  • 78. P. Bednarski, F. Mackay, P. Sadler, Photoactivatable platinum complexes, Anti-Cancer Agents Med. Chem., 7 (2007) 75.
  • 79. D. Crespy, K. Landfester, U.S. Schubertb, A. Schiller, Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs, Chem. Commun., 46 (2010) 6651.
  • 80. Z. Yang, X. Wang, H. Diao, J. Zhang, H. Li, H. Sun, Z. Guo, Encapsulation of platinum anticancer drugs by apoferritin, Chem. Commun., 33 (2007) 3453.
  • 81. F. Arnesano, A. Boccarelli, D. Cornacchia, F. Nushi, R. Sasanelli, M. Coluccia, G. Natile, Mechanistic insight into the inhibition of matrix metalloproteinases by platinum substrates, J. Med. Chem., 52 (2009) 7847.
  • 82. S.P. Fricker, Cysteine proteases as targets for metalbased drugs, Metallomics, 2 (2010) 366.
  • 83. K.S.M. Smalley, R. Contractor, N.K. Haass, A.N. Kulp, G.E. Atilla-Gokcumen, D.S. Williams, H. Bregman, K.T. Flaherty, M.S. Soengas, E. Meggers, M. Herlyn, An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells, Cancer Res., 67 (2007) 209.
  • 84. A. Vessieres, C. Corbet, J.M. Heldt, N. Lories, N. Jouy, I. Laïos, G. Leclercq, G. Jaouen, R.A. Toillon, A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines, J. Inorg. Biochem., 104 (2010) 503.
  • 85. B. Biot, N. Chavain, F. Dubar, B. Pradines, X. Trivelli, J. Brocard, I. Forfar, D. Dive, Structure-activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine, J. Organomet. Chem., 694 (2009) 845.
  • 86. G.J. Brewer, Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases, Metallomics, 1 (2009) 199.
  • 87. A. Casini, C. Gabbiani, E. Michelucci, G. Pieraccini, G. Moneti, P.J. Dyson, L. Messori, Exploring metallodrugprotein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound, J. Biol. Inorg. Chem., 14 (2009) 761.
  • 88. M. Groessl, M. Terenghi, A. Casini, L. Elviri, R. Lobinski, P.J. Dyson, Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS, J. Anal. At. Spectrom., 25 (2010) 305.
  • 89. D. Esteban-Fernández, E. Moreno-Gordaliza, B. Cañas, M.A. Palacios, M.M. Gómez-Gómez, Analytical methodologies for metallomics studies of antitumor Pt-containing drugs, Metallomics, 2 (2010) 19.
  • 90. J.K. Abramski, L.S. Foteeva, K. Pawlak, A.R. Timerbaev, M. Jarosz, A versatile approach for assaying in vitro metallodrug metabolism using CE hyphenated with ICP-MS, Analyst, 134 (2009) 1999.
  • 91. M. Sooriyaarachchi, J. Gailer, Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES, Dalton Trans., 39 (2010) 7466.
  • 92. A. Tholey, D. Schaumlöffel, Metal labeling for quantitative protein and proteome analysis using inductively-coupled plasma mass spectrometry, Trends Analyt. Chem., 29 (2010) 399.
  • 93. S. Bomke, M. Sperling, U. Karst, Organometallic derivatizing agents in bioanalysis, Anal. Bioanal. Chem., 397 (2010) 3483.
  • 94. R. Ahrends, S. Pieper, B. Neumann, C. Scheler, M.W. Linscheid, Metal-coded affinity tag labeling: a demonstration of analytical robustness and suitability for biological applications, Anal. Chem., 81 (2009) 2176.
  • 95. N. Jakubowski, L. Waentig, H. Hayen, A. Venkatachalam, A. von Bohlen, P.H. Roos, A. Manz, Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4, 7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and lanthanides and detection by ICP-MS, J. Anal. At. Spectrom., 23 (2008) 1497.
  • 96. C. Zhang, F. Wu, Y. Zhang, X. Wang, X. Zhang, A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum, J. Anal. At. Spectrom., 16 (2001) 1393.
  • 98. Y. Lu, W. Wang, Z. Xing, S. Wang, P. Cao, S. Zhang, X. Zhang, Development of an ICP-MS immunoassay for the detection of anti-erythropoietin antibodies, Talanta, 78 (2009) 869.
  • 99. C. Giesen, N. Jakubowski, U. Panne, M.G. Weller, Comparison of ICP-MS and photometric detection of an immunoassay for the determination of ochratoxin A in wine, J. Anal. At. Spectrom., 25 (2010) 1567.
  • 100.S.D. Müller, R.A. Diaz-Bone, J. Felix, W. Goedecke, Detection of specific proteins by laser ablation inductively coupled plasma mass spectrometry (LAICP-MS) using gold cluster labelled antibodies, J. Anal. At. Spectrom., 20 (2005) 907.
  • 101.D.J. Kutscher, J. Bettmer, Absolute and relative protein quantification with the use of isotopically labeled p-hydroxymercuribenzoic acid and complementary MALDI-MS and ICPMS detection, Anal. Chem., 81 (2009) 9172.
  • 102.O. Ornatsky, V.I. Baranov, D.R. Bandura, S.D. Tanner, J. Dick, Multiple cellular antigen detection by ICP-MS, J. Immunol. Methods, 308 (2006) 68.
  • 103.D. Dinakarpandian, V. Morrissette, S. Chaudhary, K. Amini, B. Bennett, J.D. Van Horn, An informatics search for the low-molecular weight chromium binding peptide, BMC Chem. Biol., 4 (2004) 1.
  • 104.İ.İ. Boşgelmez, T. Söylemezoğlu, G. Güvendik, The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue, Biol. Trace Elem. Res., 125 (2008) 46.
  • 105.S. Döker, S. Mounicou, M. Doğan, R. Lobinski, Probing the metal-homeostatis effects of the administration of chromium(VI) to mice by ICP MS and size-exclusion chromatography-ICP MS, Metallomics, 2 (2010) 549.
  • 106.A. Levina, P.A. Lay, Chemical properties and toxicity of chromium(III) nutritional supplements, Chem. Res. Toxicol., 21 (2008) 563.
  • 107.İ.İ. Boşgelmez, S. Döker, G. Güvendik, Krom(III) içeren destekleyici preparatların toksikolojik ve farmakolojik açıdan değerlendirilmesi, Modern Fitofarmakoterapi ve Doğal Farmasötikler, 1 (2010) 51.
  • 108.N. Kaewkhomdee, S. Mounicou, J. Szpunar, R. Lobinski, J. Shiowatana, Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection, Anal. Bioanal. Chem., 396 (2010) 1355.
  • 109.J. Far, H. Preud’homme, R. Lobinski, Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection, Anal. Chim. Acta, 657 (2010) 175.
  • 110. L. Tastet, D. Schaumlöffel, A. Yiannikouris, R. Power, R. Lobinski, Insight in the transport behavior of copper glycinate complexes through the porcine gastrointestinal membrane using an Ussing chamber assisted by mass spectrometry analysis, J. Trace Elem. Med. Biol., 24 (2010) 124.
  • 111. O. Alp, E.J. Merino, J.A. Caruso, Arsenic-induced protein phosphorylation changes in HeLa cells, Anal. Bioanal. Chem., 398 (2010) 2099.
  • 112. Y. Ogra, Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies, Anal.Sci., 25 (2009) 1189.
  • 113.R.N. Easter, Q. Chan, B. Lai, E.L. Ritman, J.A. Caruso, Z. Qin, Vascular metallomics: Copper in the vasculature, Vasc. Med., 15 (2010) 61
There are 112 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Serhat Döker This is me

İ. İpek Boşgelmez This is me

Gülin Güvendik This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 2

Cite

APA Döker, S., Boşgelmez, İ. İ., & Güvendik, G. (2011). Metallomics as a Junction between Life Sciences. Hacettepe Journal of Biology and Chemistry, 39(2), 173-188.
AMA Döker S, Boşgelmez İİ, Güvendik G. Metallomics as a Junction between Life Sciences. HJBC. April 2011;39(2):173-188.
Chicago Döker, Serhat, İ. İpek Boşgelmez, and Gülin Güvendik. “Metallomics As a Junction Between Life Sciences”. Hacettepe Journal of Biology and Chemistry 39, no. 2 (April 2011): 173-88.
EndNote Döker S, Boşgelmez İİ, Güvendik G (April 1, 2011) Metallomics as a Junction between Life Sciences. Hacettepe Journal of Biology and Chemistry 39 2 173–188.
IEEE S. Döker, İ. İ. Boşgelmez, and G. Güvendik, “Metallomics as a Junction between Life Sciences”, HJBC, vol. 39, no. 2, pp. 173–188, 2011.
ISNAD Döker, Serhat et al. “Metallomics As a Junction Between Life Sciences”. Hacettepe Journal of Biology and Chemistry 39/2 (April 2011), 173-188.
JAMA Döker S, Boşgelmez İİ, Güvendik G. Metallomics as a Junction between Life Sciences. HJBC. 2011;39:173–188.
MLA Döker, Serhat et al. “Metallomics As a Junction Between Life Sciences”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 2, 2011, pp. 173-88.
Vancouver Döker S, Boşgelmez İİ, Güvendik G. Metallomics as a Junction between Life Sciences. HJBC. 2011;39(2):173-88.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc