BibTex RIS Kaynak Göster

Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds

Yıl 2015, Cilt: 43 Sayı: 1, 1 - 8, 01.03.2015

Öz

For the purpose of investigating alternative adsorbents, new metal-organic compounds were synthesized, characterized and examined for their hydrogen storage capabilities. First, the compounds were synthesized and then the molecular structures of the compounds were determined experimentally by using thermal, FT-IR, solid-UV and powder-XRD analysis. Then, the crystal structures were solved using theoretical calculations. At last, the simulated maximum hydrogen storage capacities of the compounds were 3.62 and 0.64 wt. % at 77 K and 100 bars, while the numbers less than 0.1 wt. % for 1 bar and same temperature. In brief, crystal structu- res of inorganic compounds are determined with combined experimental and computational techniques, then, hydrogen storage abilities are investigated

Kaynakça

  • 1 J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen and J.T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38 (2009) 1450-1459.
  • 2 P.L. Feng, J.L. Perry, S. Nikodemski, B.W. Jacobs, S.T. Meek and M.D. Allendorf, Assessing the purity of metal− organic frameworks using photoluminescence: MOF5, ZnO quantum dots, and framework decomposition, J. Am. Chem. Soc., 132 (2010) 15487-15489.
  • 3 Y. Fu, D. Su, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem., 14 (2012) 3364–3367.
  • 4 J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev., 38 (2009) 1477-1504.
  • 5 M. Sabo, A. Henschel, H. Fröde, E. Klemm, K. Stefan, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 17 (2007) 3827-3832.
  • 6 K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Urbe-Rom, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103 (2006) 10186- 10191.
  • 7 N. Wasio, R.C. Quardokus, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, A.S. Kandel, Self-assembly of hydrogen-bonded two-dimensional quasicrystals, Nature, 507 (2013) 86-89.
  • 8 H. Chen, S.L. Lin, A combined experiment and molecular dynamics simulation study on the influence of the crosslinking on the crystallization of comb fluorinated acrylate copolymers, J Mater Sci., 49 (2014) 986-993.
  • 9 R. Kitaura, F. Iwahori, R. Matsuda, S. Kitagawa, Y. Kubota, M. Takata, T.C. Kobayashi, Rational design and crystal structure determination of a 3-D metal− organic jungle-gym-like open framework, Inorg. Chem., 43 (2004) 6522-6524.
  • 10 Y. Zhao, Y.H. Kim, A.C. Dillion, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs, Phys. Rev. Lett., 94 (2005) 155504.
  • 11 P.F. Weck, T.J. Dhilip Kumar, E. Kim, N. Balakrishan, Computational study of hydrogen storage in organometallic compounds, J. Chem. Phys., 126 (2007) 94703-1-97703-6.
  • 12 D. Rao, R. Lu, C. Xiao, E. Kan, K. Deng, Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures, Chem. Commun., 47 (2011) 7698-7700.
  • 13 B.R. Bruccoleri, R.E. Olafson, B.D. States, D.J. Swaminathan, S. Karplus, M.Charmm, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4 (1983) 187-217.
  • 14 M.A. Neumann, X-Cell: a novel indexing algorithm for routine tasks and difficult cases, J. Appl. Cryst., 36 (2003) 356-365.
  • 15 C. Lee, W. Yang, R.G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785.
  • 16 F. Sanchez-Bajo, F.L. Cumbrera, The use of the pseudo-voigt function in the variance method of X-ray line-broadening analysis, J. Appl. Cryst., 30 (1997) 427-430.
  • 17 W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1969) 97-109.
  • 18 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (fifth Ed.), New York: Wiley Interscience, (1984) 59-62.
  • 19 D.A. Kose, H. Necefoglu, H. Icbudak, Synthesis and characterization of N,N-Diethylnicotinamideacetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II), J. Coord. Chem., 61 (2008) 3508-3515.
  • 20 D.A. Kose, H. Necefoglu, Synthesis and characterization of bis(nicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II), J. Therm. Anal. Calorimetry, 93 (2008) 509-514.
  • 21 T.N. Blanton, M. Rajeswaran, P.W. Stephens, D.R. Whitcomb, S.T. Misture, J.A. Kaduk, Crystal structure determination of the silver carboxylate dimer [Ag(O2C22H43)]2, silver behenate, using powder X-ray diffraction methods, Powder Diffraction, 26 (2011) 313-320.
  • 22 M. Tasner, B. Prugovecki, Z. Soldin, S. Prugovecki, L. Rukavina, D. Matkovic-Calogvic, Synthesis and characterization of oxomolybdenum(V) dinuclear complexes with b-alanine, l-serine and dl-isoleucine, Polyhedron, 52 (2013) 268-276.
  • 23 L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, Microporous metal organic materials: promising candidates as sorbents for hydrogen storage, J. Am. Chem. Society, 126 (2004) 1308-1309.
  • 24 M. Dinca, A.F. Yu, J.R. Long, Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: synthesis, structures, and hydrogen storage properties, J. Am. Chem. Society, 128 (2006) 8904- 8913.
  • 25 Y. Li, L. Xie, R. Yang, X. Li, Favorable hydrogen storage properties of M(HBTC)(4,4 -bipy)•3DMF (M = Ni and Co), Inorg. Chem., 47 (2008) 10372-10377.

Cu II Ve Ni II Metal-Organik Bileşiklerin Hidrojen Depolama Özellikleri Deneysel ve Moleküler Simulasyon Çalışmaları

Yıl 2015, Cilt: 43 Sayı: 1, 1 - 8, 01.03.2015

Öz

A lternatif depolayıcılar geliştirme amacıyla yeni metal-organik bileşikler sentezlenmiş, karakterize edilmiş ve hidrojen depolama özellikleri belirlenmiştir. Öncelikle, bileşikler sentezlenmiş ve sonra, termal, FTIR, katı-UV ve toz-XRD deneysel analiz teknikleri kullanılarak moleküler yapıları karakterize edilmiştir. Daha sonra, kristal yapıları teorik hesaplamalarla çözümlenmiştir. Sonuç olarak, bileşiklerin simule edilmiş hidrojen depolama performansları 77 K ve 1 bar basınçta kütlece % 1’in altındayken aynı sıcaklık ve 100 bar basınçta kütlece % 3.62 ve 0.64’tür. Sonuç olarak, inorganik bileşiklerin kristal yapıları aynı zamanda teorik ve deneysel olarak belirlenmiş, sonrasında hidrojen depolama yetenekleri araştırılmıştır

Kaynakça

  • 1 J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen and J.T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38 (2009) 1450-1459.
  • 2 P.L. Feng, J.L. Perry, S. Nikodemski, B.W. Jacobs, S.T. Meek and M.D. Allendorf, Assessing the purity of metal− organic frameworks using photoluminescence: MOF5, ZnO quantum dots, and framework decomposition, J. Am. Chem. Soc., 132 (2010) 15487-15489.
  • 3 Y. Fu, D. Su, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem., 14 (2012) 3364–3367.
  • 4 J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev., 38 (2009) 1477-1504.
  • 5 M. Sabo, A. Henschel, H. Fröde, E. Klemm, K. Stefan, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 17 (2007) 3827-3832.
  • 6 K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Urbe-Rom, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103 (2006) 10186- 10191.
  • 7 N. Wasio, R.C. Quardokus, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, A.S. Kandel, Self-assembly of hydrogen-bonded two-dimensional quasicrystals, Nature, 507 (2013) 86-89.
  • 8 H. Chen, S.L. Lin, A combined experiment and molecular dynamics simulation study on the influence of the crosslinking on the crystallization of comb fluorinated acrylate copolymers, J Mater Sci., 49 (2014) 986-993.
  • 9 R. Kitaura, F. Iwahori, R. Matsuda, S. Kitagawa, Y. Kubota, M. Takata, T.C. Kobayashi, Rational design and crystal structure determination of a 3-D metal− organic jungle-gym-like open framework, Inorg. Chem., 43 (2004) 6522-6524.
  • 10 Y. Zhao, Y.H. Kim, A.C. Dillion, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs, Phys. Rev. Lett., 94 (2005) 155504.
  • 11 P.F. Weck, T.J. Dhilip Kumar, E. Kim, N. Balakrishan, Computational study of hydrogen storage in organometallic compounds, J. Chem. Phys., 126 (2007) 94703-1-97703-6.
  • 12 D. Rao, R. Lu, C. Xiao, E. Kan, K. Deng, Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures, Chem. Commun., 47 (2011) 7698-7700.
  • 13 B.R. Bruccoleri, R.E. Olafson, B.D. States, D.J. Swaminathan, S. Karplus, M.Charmm, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4 (1983) 187-217.
  • 14 M.A. Neumann, X-Cell: a novel indexing algorithm for routine tasks and difficult cases, J. Appl. Cryst., 36 (2003) 356-365.
  • 15 C. Lee, W. Yang, R.G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785.
  • 16 F. Sanchez-Bajo, F.L. Cumbrera, The use of the pseudo-voigt function in the variance method of X-ray line-broadening analysis, J. Appl. Cryst., 30 (1997) 427-430.
  • 17 W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1969) 97-109.
  • 18 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (fifth Ed.), New York: Wiley Interscience, (1984) 59-62.
  • 19 D.A. Kose, H. Necefoglu, H. Icbudak, Synthesis and characterization of N,N-Diethylnicotinamideacetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II), J. Coord. Chem., 61 (2008) 3508-3515.
  • 20 D.A. Kose, H. Necefoglu, Synthesis and characterization of bis(nicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II), J. Therm. Anal. Calorimetry, 93 (2008) 509-514.
  • 21 T.N. Blanton, M. Rajeswaran, P.W. Stephens, D.R. Whitcomb, S.T. Misture, J.A. Kaduk, Crystal structure determination of the silver carboxylate dimer [Ag(O2C22H43)]2, silver behenate, using powder X-ray diffraction methods, Powder Diffraction, 26 (2011) 313-320.
  • 22 M. Tasner, B. Prugovecki, Z. Soldin, S. Prugovecki, L. Rukavina, D. Matkovic-Calogvic, Synthesis and characterization of oxomolybdenum(V) dinuclear complexes with b-alanine, l-serine and dl-isoleucine, Polyhedron, 52 (2013) 268-276.
  • 23 L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, Microporous metal organic materials: promising candidates as sorbents for hydrogen storage, J. Am. Chem. Society, 126 (2004) 1308-1309.
  • 24 M. Dinca, A.F. Yu, J.R. Long, Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: synthesis, structures, and hydrogen storage properties, J. Am. Chem. Society, 128 (2006) 8904- 8913.
  • 25 Y. Li, L. Xie, R. Yang, X. Li, Favorable hydrogen storage properties of M(HBTC)(4,4 -bipy)•3DMF (M = Ni and Co), Inorg. Chem., 47 (2008) 10372-10377.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Zeynel Öztürk Bu kişi benim

Göksel Özkan Bu kişi benim

Dursun Ali Kose Bu kişi benim

Abdurrahim Asan Bu kişi benim

Yayımlanma Tarihi 1 Mart 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 43 Sayı: 1

Kaynak Göster

APA Öztürk, Z., Özkan, G., Kose, D. A., Asan, A. (2015). Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds. Hacettepe Journal of Biology and Chemistry, 43(1), 1-8.
AMA Öztürk Z, Özkan G, Kose DA, Asan A. Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds. HJBC. Mart 2015;43(1):1-8.
Chicago Öztürk, Zeynel, Göksel Özkan, Dursun Ali Kose, ve Abdurrahim Asan. “Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds”. Hacettepe Journal of Biology and Chemistry 43, sy. 1 (Mart 2015): 1-8.
EndNote Öztürk Z, Özkan G, Kose DA, Asan A (01 Mart 2015) Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds. Hacettepe Journal of Biology and Chemistry 43 1 1–8.
IEEE Z. Öztürk, G. Özkan, D. A. Kose, ve A. Asan, “Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds”, HJBC, c. 43, sy. 1, ss. 1–8, 2015.
ISNAD Öztürk, Zeynel vd. “Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds”. Hacettepe Journal of Biology and Chemistry 43/1 (Mart 2015), 1-8.
JAMA Öztürk Z, Özkan G, Kose DA, Asan A. Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds. HJBC. 2015;43:1–8.
MLA Öztürk, Zeynel vd. “Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds”. Hacettepe Journal of Biology and Chemistry, c. 43, sy. 1, 2015, ss. 1-8.
Vancouver Öztürk Z, Özkan G, Kose DA, Asan A. Combined Experimental and Molecular Simulation Study on The Hydrogen Storage Properties of Cu II and Ni II Metal- Organic Compounds. HJBC. 2015;43(1):1-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc