BibTex RIS Cite

Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology

Year 2015, Volume: 43 Issue: 3, 167 - 178, 01.09.2015

Abstract

Arbutin is a naturally occurring derivative of hydroquinone. It is found in various plant species belonging to diverse families, such as Lamiaceae, Ericaceae, Saxifragaceae and Rosaceae. It inhibits tyrosinase and has been employed as a cosmetic skin whitening agent. In this study, the ultrasound assisted extraction of arbutin from Pyrus Communis L. leaves was modeled using responce surface methodology. A three-level-three-factor Box–Behnken design was employed to optimize three extraction variables, including extraction temperature X1 , extraction time X2 , and methanol concentration X3 , for the achievement of high extraction yield of the arbutin. The optimized conditions are extraction temperature of 43.37oC, methanol concentration of 56.81%, extraction time of 29.66 min. Under this optimized conditions, the experimental yield of arbutin is 3.10%, which is well matched with the predicted yield of 3.12%.

References

  • 1. GRIN (May 10, 2012). “Pyrus elaeagnifolia Pall.”. Taxonomy for Plants. National Germplasm Resources Laboratory, Beltsville, Maryland: USDA, ARS, National Genetic Resources Program., Retrieved January 29, 2014.
  • 2. Zargari, A. (1996). Medicinal plants (6th ed.). Tehran: Tehran University Publications.
  • 3. Azadbakht, M., Marston, A., Hostettmann, K., Ramezani, M., & Jahromi, M. Biological activity of leaf extract and phenolglycoside arbutin of Pyrus boissieriana Buhse., Journal of Medicinal Plants, 3 (2004) 9–14.
  • 4. Ska, I.R., Nowak, S., ‘Quantitative Determination of Arbutin and Hydroquinone in Different Plant Materials by HPLC’ Notulae Botanicae Horti AgrobotaniciClujNapoca, Not Bot Horti Agrobo, 40 (2012) 109-113.
  • 5. Funayama, M., Arakawa, H., Yamamoto, R., Nishino, H., Shin, T., Murao, S., Effects of alpha- and betaarbutin on activiety of tyrosinases from mushroom and mouse melanoma, Biosci. Biotechnol. Biochem., 59 (1995) 143–144.
  • 6. Nihei, K., Kubo, I., Identification of oxidation product of arbutin in mushroom tyrosinase assay system. Bioorg. Med. Chem. Lett., 13 (2003) 2409–2412.
  • 7. Nishimura, T., Kometani, T., Okada, S., Ueno, N., Yamamoto, T., Inhibitory effects of hydroquinonealpha-glucoside on melanin synthesis, Yakugaku Zasshi (in Japanese)., 115 (1995) 626–632.
  • 8. Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., Kuriki, T., Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model, Biol. Pharm. Bull., 27 (2004) 510–514.
  • 9. Tomita, K., Fukuda, M., Kawasai, K., Mechanism of arbutin inhibitory effect on melanogenesis and effect on the human skin with cosmetic use, Fragrance J., 18 (1990) 72–77.
  • 10. Petkou, D., Diamantidis, G., & Vasilakakis, M. Arbutin oxidation by pear (Pyrus Communis L.) peroxidases, Plant Science, 162 (2002) 115–119.
  • 11. Myagmar, B.E., Shinno, E., Ichiba, T., & Aniya, Y. Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats, Phytomedicine, 11 (2004) 416–423.
  • 12. Cho, J.Y., Park, K.Y., Lee, K.H., Lee, H.J., Lee, S.H., Cho, J.A., Kim, W.S., Shin, S.C., Park, K.H., Moon, J.H., Recovery of arbutin in high purity from fuit peels of pear (Pyrus pyrifolia Nakai), Food Sci. Biotechnol., 20 (2011) 801–807.
  • 13. Lee, B.D., Eun, J.B., Optimum extraction conditions for arbutin from asian pear peel by supercritical fluid extraction (SFE) using Box-Behnken design, J. Med. Plants Res., 6 (2012) 2348–2364.
  • 14. Azadbakht, M., Marstonm, A., Hostettmann, K., Ramezani, M., Jahromi, M., Biological activity of leaf extract and phenolglycoside arbutin of Pyrus boissieriana Buhse, J. Med. Plants., 3 (2004) 9–14.
  • 15. Shahaboddin, M.E., Pouramir, M., Moghadamnia, A.A., Parsian, H., Lakzaei, M., Mir, H., Pyrus biossieriana Buhse leaf extract: An antioxidant, antihyperglycaemic and antihyperlipidemic agent, Food Chem., 126 (2011) 1730–1733.
  • 16. Cui, T., Nakamura, K., Ma, L., Li, J.Z., Kayahara, H., Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear, J. Agric. Food Chem., 53 (2005) 3882–3887.
  • 17. Pavlovi,ć R.D., Lakuši,ć B., Došlov-Kokoruš, Z., Kovacevic,ć N., Arbutin content and antioxidant activity of some Ericaceae species, Pharmazie, 64 (2009) 656-659.
  • 18. Glöckl, I., Blaschke, G., Veit, M., Validated methods for direct determination of hydroquinone glucuronide and sulfate in human urine after oral intake of bearberry leaf extract by capillary zone electrophoresis, J Chromatogr B: Biomed Sci Appl., 761 (2001) 261-266.
  • 19. Pyka, A., Bober, K., Stolarczyk, A., Densitometric determination of arbutinin cowberry leaves (Vaccinium Vitis-idaeae), Acta Pol Pharm., 63 (2007) 395-400.
  • 20. Lamien-Meda, A., Lukas, B., Schmiderer, C., Franz, C., Novak, J., Validation of a quantitative assay of arbutin using gas chromatography in Origanum majorana and Arctostaphylos uva-ursi extracts, Phytochem Anal, 20 (2009) 416-420.
  • 21. Asaaf, M., Ali, A., Makboul, M., Beck, J.P., Anton, R., Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone, Planta Med, 53 (1986) 343-345.
  • 22. Parejo, I., Viladomat, F., Bastida, J., Codina, C.A., single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by HPLC, Phytochem Anal, 12 (2001) 336-339.
  • 23. Wettasinghe, M., Shahidi, F., Evening primrose meal: A source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals, Journal of Agricultural and Food Chemistry, 47 (1999) 1801–1812.
  • 24. Cacace, J.E., Mazza, G., Optimization of extraction of anthocyanins from black currants with aqueous ethanol, Journal of Food Science, 68 (2003) 240–248.
  • 25. Cacace, J.E., Mazza, G., Extraction of anthocyanins and other phenolics from black currants with sulfured water, Journal of Agricultural and Food Chemistry, 50 (2002) 5939–5946.
  • 26. Haaland, P.O., (1989). Experimental design in biotechnology. New York: Marcel Dekker. 27. Box, G.E.P., Wilson, K.B., On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society, 13 (1951) 1–45.
  • 28. Myers, R.H., Montgomery, D.C., (2002). Response surface methodology: Process and product optimization using designed experiments (2nd ed.). New York: Wiley.
  • 29. Cacace, J.E., Mazza, G., Mass transfer process during extraction of phenolic compounds from milled berries, Journal of Food Engineering, 59 (2003) 379–389.
  • 30. Parajo, J.C., Santos, V., Dominguez, H., Vazquez, M., NH4OH-based pretreatment for improving the nutritional quality of single-cell protein (SCP), Applied Biochemistry and Biotechnology, 55 (1995) 133–150.
  • 31. Senanayake, S.P.J.N., Shahidi, F., Enzyme-assisted acidolysis of borage (Borage officinalis L) and evening primrose (Oenothera biennis L) oils: Incorporation of x-3 polyunsaturated fatty acids, Journal of Agricultural and Food Chemistry, 47 (1999) 3105–3112.
  • 32. Senanayake, S.P.J.N., Shahidi, F., Lipase-catalyzed incorporation of docosahexaenoic acid (DMA) into borage oil: optimization using response surface methodology, Food Chemistry, 77 (2002) 115–123.
  • 33. Telez-Luis, S.J., Moldes, A.B., Alonso, J.L., Vazquez, M., Optimization of lactic acid production by Lactobacillus delbrueckii through response surface methodology, Journal of Food Science, 68 (2003) 1454–1458.
  • 34. Vasquez, M., Martin, A., Optimization of Phaffia rhodozyma continuous culture through response surface methodology, Biotechnology and Bioengineering, 57 (1998)314–320.
  • 35. Gao, L., Mazza, G., Extraction of anthocyanin pigments from purple sunflower hulls, Journal of Food Science, 61 (1996) 600–603.
  • 36. Ge, Y., Ni, Y., Yan, H., Chen, Y., Cai, T. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology, Journal of Food Science, 67 (2002) 239–243.

Armut Yapraklarından Arbutinin Ultrasonik Destekli Ekstraksiyonunun Yüzey Yanıt Metadolojisi ile Optimizasyonu

Year 2015, Volume: 43 Issue: 3, 167 - 178, 01.09.2015

Abstract

A rbutin doğal olarak oluşan bir hidrokinon türevidir. Ballıbabagiller, fundagiller, taşkırangiller, gülgiller gibi farklı familyalara ait farklı bitki türlerinde bulunur. Arbutin tirozinazı engeller ve cilt beyazlatma ajanı olarak kullanılır. Bu çalışmada Yüzey Yanıt Metodolojisi kullanılarak armut yapraklarından arbutinin ultrasonik destekli özütlemesi modellenmiştir. Arbutinin yüksek özütleme veriminin elde edilmesi için özütleme sıcaklığı X1 , özütleme zamanı X2 ve metanol derişimi X3 gibi üç özütleme değişkenini optimize etmek için üç-düzeyli üç-faktörlü Box-Behnken tasarımı kullanılmıştır. Optimize koşullar; 43.37oC özütleme sıcaklığı , %56.81 metanol derişimi ve 29.66 dakika özütleme zamanıdır. Bu optimize koşullar atında arbutinin deneysel verimi %3.10’dur. Bu değer tahmin edilen %3.12 değeri ile uyumludur

References

  • 1. GRIN (May 10, 2012). “Pyrus elaeagnifolia Pall.”. Taxonomy for Plants. National Germplasm Resources Laboratory, Beltsville, Maryland: USDA, ARS, National Genetic Resources Program., Retrieved January 29, 2014.
  • 2. Zargari, A. (1996). Medicinal plants (6th ed.). Tehran: Tehran University Publications.
  • 3. Azadbakht, M., Marston, A., Hostettmann, K., Ramezani, M., & Jahromi, M. Biological activity of leaf extract and phenolglycoside arbutin of Pyrus boissieriana Buhse., Journal of Medicinal Plants, 3 (2004) 9–14.
  • 4. Ska, I.R., Nowak, S., ‘Quantitative Determination of Arbutin and Hydroquinone in Different Plant Materials by HPLC’ Notulae Botanicae Horti AgrobotaniciClujNapoca, Not Bot Horti Agrobo, 40 (2012) 109-113.
  • 5. Funayama, M., Arakawa, H., Yamamoto, R., Nishino, H., Shin, T., Murao, S., Effects of alpha- and betaarbutin on activiety of tyrosinases from mushroom and mouse melanoma, Biosci. Biotechnol. Biochem., 59 (1995) 143–144.
  • 6. Nihei, K., Kubo, I., Identification of oxidation product of arbutin in mushroom tyrosinase assay system. Bioorg. Med. Chem. Lett., 13 (2003) 2409–2412.
  • 7. Nishimura, T., Kometani, T., Okada, S., Ueno, N., Yamamoto, T., Inhibitory effects of hydroquinonealpha-glucoside on melanin synthesis, Yakugaku Zasshi (in Japanese)., 115 (1995) 626–632.
  • 8. Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., Kuriki, T., Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model, Biol. Pharm. Bull., 27 (2004) 510–514.
  • 9. Tomita, K., Fukuda, M., Kawasai, K., Mechanism of arbutin inhibitory effect on melanogenesis and effect on the human skin with cosmetic use, Fragrance J., 18 (1990) 72–77.
  • 10. Petkou, D., Diamantidis, G., & Vasilakakis, M. Arbutin oxidation by pear (Pyrus Communis L.) peroxidases, Plant Science, 162 (2002) 115–119.
  • 11. Myagmar, B.E., Shinno, E., Ichiba, T., & Aniya, Y. Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats, Phytomedicine, 11 (2004) 416–423.
  • 12. Cho, J.Y., Park, K.Y., Lee, K.H., Lee, H.J., Lee, S.H., Cho, J.A., Kim, W.S., Shin, S.C., Park, K.H., Moon, J.H., Recovery of arbutin in high purity from fuit peels of pear (Pyrus pyrifolia Nakai), Food Sci. Biotechnol., 20 (2011) 801–807.
  • 13. Lee, B.D., Eun, J.B., Optimum extraction conditions for arbutin from asian pear peel by supercritical fluid extraction (SFE) using Box-Behnken design, J. Med. Plants Res., 6 (2012) 2348–2364.
  • 14. Azadbakht, M., Marstonm, A., Hostettmann, K., Ramezani, M., Jahromi, M., Biological activity of leaf extract and phenolglycoside arbutin of Pyrus boissieriana Buhse, J. Med. Plants., 3 (2004) 9–14.
  • 15. Shahaboddin, M.E., Pouramir, M., Moghadamnia, A.A., Parsian, H., Lakzaei, M., Mir, H., Pyrus biossieriana Buhse leaf extract: An antioxidant, antihyperglycaemic and antihyperlipidemic agent, Food Chem., 126 (2011) 1730–1733.
  • 16. Cui, T., Nakamura, K., Ma, L., Li, J.Z., Kayahara, H., Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear, J. Agric. Food Chem., 53 (2005) 3882–3887.
  • 17. Pavlovi,ć R.D., Lakuši,ć B., Došlov-Kokoruš, Z., Kovacevic,ć N., Arbutin content and antioxidant activity of some Ericaceae species, Pharmazie, 64 (2009) 656-659.
  • 18. Glöckl, I., Blaschke, G., Veit, M., Validated methods for direct determination of hydroquinone glucuronide and sulfate in human urine after oral intake of bearberry leaf extract by capillary zone electrophoresis, J Chromatogr B: Biomed Sci Appl., 761 (2001) 261-266.
  • 19. Pyka, A., Bober, K., Stolarczyk, A., Densitometric determination of arbutinin cowberry leaves (Vaccinium Vitis-idaeae), Acta Pol Pharm., 63 (2007) 395-400.
  • 20. Lamien-Meda, A., Lukas, B., Schmiderer, C., Franz, C., Novak, J., Validation of a quantitative assay of arbutin using gas chromatography in Origanum majorana and Arctostaphylos uva-ursi extracts, Phytochem Anal, 20 (2009) 416-420.
  • 21. Asaaf, M., Ali, A., Makboul, M., Beck, J.P., Anton, R., Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone, Planta Med, 53 (1986) 343-345.
  • 22. Parejo, I., Viladomat, F., Bastida, J., Codina, C.A., single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by HPLC, Phytochem Anal, 12 (2001) 336-339.
  • 23. Wettasinghe, M., Shahidi, F., Evening primrose meal: A source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals, Journal of Agricultural and Food Chemistry, 47 (1999) 1801–1812.
  • 24. Cacace, J.E., Mazza, G., Optimization of extraction of anthocyanins from black currants with aqueous ethanol, Journal of Food Science, 68 (2003) 240–248.
  • 25. Cacace, J.E., Mazza, G., Extraction of anthocyanins and other phenolics from black currants with sulfured water, Journal of Agricultural and Food Chemistry, 50 (2002) 5939–5946.
  • 26. Haaland, P.O., (1989). Experimental design in biotechnology. New York: Marcel Dekker. 27. Box, G.E.P., Wilson, K.B., On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society, 13 (1951) 1–45.
  • 28. Myers, R.H., Montgomery, D.C., (2002). Response surface methodology: Process and product optimization using designed experiments (2nd ed.). New York: Wiley.
  • 29. Cacace, J.E., Mazza, G., Mass transfer process during extraction of phenolic compounds from milled berries, Journal of Food Engineering, 59 (2003) 379–389.
  • 30. Parajo, J.C., Santos, V., Dominguez, H., Vazquez, M., NH4OH-based pretreatment for improving the nutritional quality of single-cell protein (SCP), Applied Biochemistry and Biotechnology, 55 (1995) 133–150.
  • 31. Senanayake, S.P.J.N., Shahidi, F., Enzyme-assisted acidolysis of borage (Borage officinalis L) and evening primrose (Oenothera biennis L) oils: Incorporation of x-3 polyunsaturated fatty acids, Journal of Agricultural and Food Chemistry, 47 (1999) 3105–3112.
  • 32. Senanayake, S.P.J.N., Shahidi, F., Lipase-catalyzed incorporation of docosahexaenoic acid (DMA) into borage oil: optimization using response surface methodology, Food Chemistry, 77 (2002) 115–123.
  • 33. Telez-Luis, S.J., Moldes, A.B., Alonso, J.L., Vazquez, M., Optimization of lactic acid production by Lactobacillus delbrueckii through response surface methodology, Journal of Food Science, 68 (2003) 1454–1458.
  • 34. Vasquez, M., Martin, A., Optimization of Phaffia rhodozyma continuous culture through response surface methodology, Biotechnology and Bioengineering, 57 (1998)314–320.
  • 35. Gao, L., Mazza, G., Extraction of anthocyanin pigments from purple sunflower hulls, Journal of Food Science, 61 (1996) 600–603.
  • 36. Ge, Y., Ni, Y., Yan, H., Chen, Y., Cai, T. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology, Journal of Food Science, 67 (2002) 239–243.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İbrahim Bulduk This is me

Işıl Açıkgöz Sağlam This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 43 Issue: 3

Cite

APA Bulduk, İ., & Açıkgöz Sağlam, I. (2015). Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology. Hacettepe Journal of Biology and Chemistry, 43(3), 167-178.
AMA Bulduk İ, Açıkgöz Sağlam I. Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology. HJBC. September 2015;43(3):167-178.
Chicago Bulduk, İbrahim, and Işıl Açıkgöz Sağlam. “Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. Leaves by Response Surface Methodology”. Hacettepe Journal of Biology and Chemistry 43, no. 3 (September 2015): 167-78.
EndNote Bulduk İ, Açıkgöz Sağlam I (September 1, 2015) Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology. Hacettepe Journal of Biology and Chemistry 43 3 167–178.
IEEE İ. Bulduk and I. Açıkgöz Sağlam, “Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology”, HJBC, vol. 43, no. 3, pp. 167–178, 2015.
ISNAD Bulduk, İbrahim - Açıkgöz Sağlam, Işıl. “Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. Leaves by Response Surface Methodology”. Hacettepe Journal of Biology and Chemistry 43/3 (September 2015), 167-178.
JAMA Bulduk İ, Açıkgöz Sağlam I. Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology. HJBC. 2015;43:167–178.
MLA Bulduk, İbrahim and Işıl Açıkgöz Sağlam. “Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. Leaves by Response Surface Methodology”. Hacettepe Journal of Biology and Chemistry, vol. 43, no. 3, 2015, pp. 167-78.
Vancouver Bulduk İ, Açıkgöz Sağlam I. Optimization of Ultrasound-Assisted Extraction of Arbutin from Pyrus Communis L. leaves by Response Surface Methodology. HJBC. 2015;43(3):167-78.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc